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Abstract

We introduce two generative models of part-segmented 3D objects: the shape
variational auto-encoder (ShapeVAE) and the shape factor analyzer (ShapeFA).
These models describe a distribution over the co-existence of object parts, as well
as over the continuous variability of the object surface, leveraging the part structure
of 3D objects in their architecture. We demonstrate that while the ShapeFA slightly
outperforms the ShapeVAE in terms of density estimation, the ShapeVAE produces
better quality samples and is effective at completing partially obscured shapes.

1 Introduction

There has been a recent focus on the use of fine-grained shape representations in scene understanding
tasks see e.g. [13, 10, 2]. A detailed representation of object shape allows for complex 3D reasoning,
and a model of shape variability aids the performance of recognition tasks in images. Structures
such as 3D bounding boxes [9, 8], wireframe models [13], or 3D CAD models [2] have been used as
shape representations and successfully recognized in images. However, even these more sophisticated
object representations are limited in the extent to which they can capture 3D shape. We make use
of the representation described by Huang et al. [4] consisting of a collection of dense keypoints,
segmented into the object’s constituent parts (Figure 2). Such a representation is useful as a means of
representing 3D structures, and as such a model of the variability of an object class in terms of this
representation would be useful for computer vision tasks.

In this work we present two models of structural and local shape variability that capture a distribution
over the co-existence of object parts, as well as over the continuous variability of the object surface.
We demonstrate that a part-structured variational auto-encoder achieves comparable performance in
density estimation to a linear baseline, while producing samples of a higher quality.

2 Model

We consider a dataset of aligned 3D objects from the same object class, with a shape representation
consisting of 3D point clouds in which points are in one-to-one correspondence across different
instances. We assume that the 3D point clouds consist of multiple parts, which may or not be present
in a particular instance as in [4]. In order to deal with missing parts we allow our keypoint variables
to take on a symbol m indicating missingness. As such the keypoint variables have the domain
x ∈ (R ∪m)D where D is the number of keypoints. We represent the pattern of part existences in a
data example with a binary vector e ∈ {0, 1}K where K is the number of object parts, and aim to
model the joint distribution over keypoints and part existences p(x, e).

Part existences: Part existence variables e are assumed to have been generated by a categorical
distribution p(e|φ). For an object with K parts this is a distribution over 2K possible states, which
in the absence of independence assumptions requires 2K − 1 parameters. In practice only a few
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Figure 1: Generative models of part-segmented shapes: (a) Graphical model representing condi-
tional independence assumptions. (b) ShapeFA generative model structure. (c) ShapeVAE generative
model structure. Filled circles represent visible variable, un-filled circles represent latent variables,
and diamonds represent deterministic variables.

arrangements of part existences occur in object datasets, and so a maximum likelihood estimate
assigns most part combinations zero probability.

Keypoints: Keypoints x are generated by conditioning on part existences e. Let k(i) be the part
index associated with keypoint i, and letM(e) = {i : ek(i) = 0} be the set of indices of missing
variables. We can then write the set of missing keypoints as xm = {xi}i∈M and the set of visible
keypoints as xv = {xi}i/∈M. The missing keypoints xm are deterministically mapped to the missing
data symbol m, and keypoints whose parts are present xv are generated by a Gaussian latent variable
model

p(x|e,θ) = p(xm|e)p(xv|e,θ) (1)

z = I[xm = [m, . . . ,m]]

∫
z

N (xv|µ(z, e,θ),Σ(z, e,θ))N (z|0, I)dz, (2)

where the mappings from latent variables and existences to parameters µ(z, e,θ) and Σ(z, e,θ) can
take a variety of forms as shown below. The graphical model representing the joint distribution of
keypoints and existence variables is shown in Figure 1a.

Shape factor analysis: In this variant of the keypoint distribution we use a hierarchical factor
analysis model. For each part k we introduce part latent variables uk and use a factor analysis model
to capture shape variability within a particular part. Writing xk for the keypoints associated with part
k we have:

p(xk|uk,θ) = N (xk|W(1)
k uk + µ

(1)
k ,Ψ

(1)
k ) = FA(xk|uk,θ

(1)
k ) (3)

For a given set of part existences a conditional distribution over all the visible keypoints given the
part latent variables can be obtained by concatenating the part latent variables uv = {ui}i:ei=1 and
parameters of the visible parts θv = {θi}i:ei=1. A top-level factor analysis model captures the joint
distribution of the part latent variables for each part arrangement: p(uv|z, e,θ) = FA(uv|z, e,θ). By
integrating out the part latent variables we obtain a shallow factor analysis model, thus determining
the µ and Σ functions described in the previous section: µ(z, e,θ) = W

(1)
v (W

(2)
e z + µ

(2)
e ) + µ

(1)
v

and Σ(z, e,θ) = Ψ
(1)
v + W

(1)
v Ψ

(2)
e W

(1)
v

ᵀ
. This structure is illustrated in Figure 1b. We train the

model using the greedy layer-wise procedure described by Tang et al. [11].

Shape variational auto-encoder: The shape factor analysis model makes strong assumptions about
the data distribution: it assumes the data is uni-modal for each part arrangement, and can be generated
by adding noise to a linear mapping from latent variables. The decoder of a variational auto-encoder
(VAE) [7] is a more flexible class of generative model in which the mapping from latent variables to
data variables is an arbitrary neural network (MLP). As such the VAE can capture non-linear structure
and multi-modality which may be present in the data.

We take advantage of the part-structure of the data and mimic the architecture of the ShapeFA. As
shown in Figure 1c the generative network takes latent variables and existence variables as input, and
passes them through a series of fully-connected layers before combining to form a part representation
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Figure 2: Shape samples. (a) A collection of samples from the chairs dataset. (b) Samples generated
by a ShapeVAE with 64 latent dimensions. (c) Samples generated by a ShapeFA with 32 latent
dimensions.

u(z, e) = MLP(z, e). This representation is then split into its constituent parts u = [u1, . . . ,uK ] and
passed through further non-linear layers hk(z, e) = MLP(uk(z, e)). Finally the output parameters
are obtained using a linear layer for the mean µk(z, e) = Linear(hk(z, e)), and by applying an
exponential non-linearity for the variance σ2

k(z, e) = exp(Linear(hk(z, e))). This is analogous to
the ShapeFA in which structural latent variables map to latent part variables, which are then mapped
independently to their associated keypoints.

The encoder of the ShapeVAE reverses the architecture of the decoder but is modified to make use
of information about which parts are missing. As shown in Figure 1d the encoder takes keypoints
x as input and maps to a part representation u = [u1, . . . ,uK ]. For parts that are present the input
is mapped through fully connected layers to the part representation, whereas parts that are missing
simply generate a bias which is added in the appropriate position to the the part representation:

uk(x) =

{
MLP(xk), if xk /∈M
bk, if xk ∈M

(4)

The part representation is then passed through fully-connected layers to obtain the output parameters
of the approximate Gaussian posterior distribution as in the decoder. The parameters of the encoder
and decoder are learned simultaneously using the auto-encoding variational Bayes algorithm [7].

3 Related work

Generative models of 3D objects have been proposed for a range of shape representations including
3D voxel images [12], keypoints [4] and meshes [5, 14]. The closest work to ours is Huang et al. [4]
in which part-segmented 3D keypoints are modelled with the Beta Shape Machine (BSM), a variant
of a multi-layer Boltzmann machine that captures global and local shape variation with a similar
part-oriented structure. This model is demonstrated to be effective at generating plausible shapes, as
well as for shape segmentation and fine grained classification tasks. Unlike the BSM, our models
are directed, and as such training and sampling is more straightforward. In related work Zuffi et al.
[14] develop a parts-based ‘stitched puppet’ model of human shape which allows for the shape and
pose of body parts to be modelled separately, while encouraging connecting parts to be close together.
This allows for shape variation to be captured on various levels: on the global level articulated pose is
modelled, and on the local level continuous shape deformation is modelled

There has been recent work on generative models of voxel representations of 3D objects. Wu et al.
[12] model the joint distribution of voxels and object class labels with a convolutional deep belief
network. The authors use the model to recognise object classes and reconstruct 3D objects from a
single depth image. Girdhar et al. [3] use a 3D convolutional auto-encoder to establish a compressed
vector representation of 3D objects that can be predicted and reconstructed in real images. Volumetric
representations have the advantage that different objects are directly comparable on the voxel level,
whereas vertices and faces in triangulated meshes are not comparable. However high resolution voxel
grids have very many dimensions which is problematic for efficient generative modelling. For this
reason most work so far has made use of quite coarse voxel grids, which limit the fidelity of the
objects they can represent.
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Figure 3: Generalisation. Top: Shape samples
from a ShapeVAE with 64 latent dimensions.
Bottom: Closest examples in the training set.

Figure 4: Shape completion. Left: Unseen
data example with half of its variables obscured.
Right: Shape completion using the ShapeVAE.

Diag-Gaussian ShapeFA-8 ShapeFA-32 ShapeVAE-8 ShapeVAE-32

0.37± 0.32 1.40± 1.00 1.35± 1.35 1.35± 0.51 1.35± 0.35

Table 1: Test log-likelihood. Test log-likelihood with standard deviation in nats per dimension for
an independent Gaussian baseline, the ShapeFA, and the ShapeVAE.

4 Experiments

Data: We use the chairs class of the dataset developed by Huang et al. [4]. This dataset consists
of part-segmented 3D point-clouds of aligned objects. The chairs dataset has 3382 examples and
demonstrates considerable variability both within parts and in terms of the global layout of parts, and
as such it is a challenging task for generative modelling. We thank the authors of [4] for providing us
with the high quality part-segmented keypoint data.

We trained ShapeVAE and ShapeFA models with part representations uk with 1/15 of the dimensions
of each part xk. Hyperbolic tangent non-linearities were used and the ShapeVAE was trained with
the ADAM optimizer [6] with a batch size of 256, and a learning rate of 0.001 for 1200 epochs.

Density estimation: We evaluate the log-likelihood obtained by the ShapeFA and the estimated
log-likelihood for the ShapeVAE on a test set for models with 8 and 32 latent dimensions. The
ShapeVAE log-likelihood is estimated using 10,000 importance weighted samples [1]. We also
include a simple baseline model consisting of a diagonal Gaussian distribution for each existence
combination. Table 1 shows that the ShapeFA with 8 latent dimensions achieves the best performance,
however comparing with the ShapeVAE-32, the difference in score is not significant at the 5% level
under a paired t-test.

Sample quality: We demonstrate features of the generative models by comparing sampled 3D objects
to data examples in Figure 2. The ShapeFA produces samples that are mainly plausible, however
there are examples of unusually stretched parts. The samples produces by the ShapeVAE are realistic
and do not suffer from the same stretching issues as the ShapeFA samples.

Generalisation: As an assessment of ShapeVAE’s generalisation capability we show model samples
along with their closest training examples in terms of Euclidean distance in Figure 3. The figure
shows that for a random selection of samples the nearest data example is qualitatively different in
terms of local shape variability. This indicates that the model is generalising beyond the examples
seen in the training set.

Shape completion: The ShapeVAE and ShapeFA can be used for the completion of obscured shapes.
Figure 4 shows an example of a ShapeVAE completion, which indicates that the model is capable of
plausible conditional inference. In this example, one side of the object is shown to the model, and the
hidden side is filled in by optimizing the latent variables with respect to the visible variables, and
then mapping back to data space using the optimized latent variables.

5 Conclusion

In this paper we have demonstrated that part-structured generative models can effectively model the
high dimensional distribution over object shapes, producing realistic and novel samples. In the future
we plan to investigate the use of such models as priors for shape estimation tasks with real images.
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