Generative Models of Part-Structured 3D Objects Charlie Nash and Chris Williams, University of Edinburgh, United Kingdom charlie.nash@ed.ac.uk, ckiw@inf.ed.ac.uk

Introduction

We introduce two generative models of partsegmented 3D objects:

- The shape variational auto-encoder (ShapeVAE)
- The shape factor analyzer (ShapeFA)

These models describe a distribution over the coexistence of object parts, as well as over the continuous variability of the object surface, leveraging the part structure of 3D objects in their architecture.

Object Representation

Figure 1: Part segmented 3D chair and surface point representation.

Dataset: We use a dataset from Huang *et al.*, [1] consisting of:

- Aligned 3D objects from the same object class
- 3D point cloud representation with correspondences
- Points labelled with part ID

Notation: We represent objects with *D* keypoints and K parts as:

- Surface points $\mathbf{x} \in (\mathbb{R} \cup m)^{3D}$
- Symbol *m* indicates that a variable is missing
- Part existence vector $\mathbf{e} \in \{0, 1\}^K$

Model Structure

Categorical part existence distribution:

$$p(\mathbf{e}|\boldsymbol{\phi}) = \operatorname{Cat}(\mathbf{e}|\boldsymbol{\phi})$$

Conditional surface point distribution with latent variables:

 $p(\mathbf{x}_m | \mathbf{e}, \boldsymbol{\theta}) = \mathbb{I}[\mathbf{x}_m = [m, \dots, m]]$ $p(\mathbf{x}_v | \mathbf{e}, \boldsymbol{\theta}) = \int_{-}^{-} \mathcal{N}(\mathbf{x}_v | \boldsymbol{\mu}(\mathbf{z}, \mathbf{e}, \boldsymbol{\theta}), \boldsymbol{\Sigma}(\mathbf{z}, \mathbf{e}, \boldsymbol{\theta})) \mathcal{N}(\mathbf{z} | \mathbf{0}, \mathbf{I}) d\mathbf{z}$

Figure 2: Shape samples

- The ShapeFA produces samples that are mainly plausible, however there are examples of unusually stretched parts
- The samples produces by the ShapeVAE are realistic and do not suffer from the same stretching issues as the ShapeFA samples

hape Variational Auto-Encoder		
$\mathbf{z} \bigcirc \bigcirc$	$\mathbf{z} \bigcirc \bigcirc$	

Figure 6: **ShapeVAE**

Decoder: Map from from latent variables and existences to part representation $\mathbf{u}(\mathbf{z}, \mathbf{e}) = MLP(\mathbf{z}, \mathbf{e})$ and then split into parts $\mathbf{u} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$.

parameters are obtained using $\mu_k(\mathbf{z}, \mathbf{e}) = \text{Linear}(\mathbf{h}_k(\mathbf{z}, \mathbf{e})), \text{ and } \sigma_k^2(\mathbf{z}, \mathbf{e}) =$ $\exp(\text{Linear}(\mathbf{h}_k(\mathbf{z}, \mathbf{e}))).$

Encoder: Map from keypoints **x** to a part representation $\mathbf{u} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$. Parts that are missing simply generate a bias which is added in the appropriate position. The part representation is then passed through fully-connected layers to obtain the output parameters.

Shape completion: For the ShapeVAE the completion is obtained by optimizing the latent variables so as to match the observations.

Density estimation: The ShapeFA with 8 latent dimensions achieves the best performance.

[1] H. Huang, E. Kalogerakis, and B. M. Marlin. Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces. *Computer Graphics Forum*, 34(5):25–38, 2015.

[2] Y. Tang, R. Salakhutdinov, and G. E. Hinton. Deep mixtures of factor analysers. In ICML. icml.cc / Omnipress, 2012.

The work of CW is supported in part by EPSRC grant EP/N510129/1. CN is supported by the Centre for Doctoral Training in Data Science, funded by EPSRC grant EP/L016427/1.

Figure 4: Generalisation

Generalisation: To demonstrate that the model is capable of producing samples that are distinct from the training set we plot a set of samples along with their closest data examples.

a) Partially obscured b) ShapeVAE completion

Figure 5: Shape completion

Model	log-lik
Diag-Gaussian ShapeFA-8	0.37 ± 0.32 ${f 1.40 \pm 1.00}$
ShapeFA-32	1.35 ± 1.35
ShapeVAE-8 ShapeVAE-32	$1.35 \pm 0.51 \\ 1.35 \pm 0.35$

Table 1: Test log-likelihood.

References

Funding