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1 Introduction
What makes a 3D generative model of object shapes appealing? We believe a good generative model
should be able to synthesize 3D objects that are both highly varied and realistic. Specifically, a
generative model should be able to go beyond memorizing and recombining parts from a pre-defined
repository, and generate examples with fine details.

In the past decades, researchers have made impressive progress on 3D object modeling and syn-
thesis [7, 3, 1, 20–22], mostly based on meshes or skeletons. Many of these traditional methods
synthesize new objects by borrowing parts from objects in an existing CAD model library. Therefore,
the synthesized objects look realistic, but not conceptually novel.

Recently, with the advances in deep representation learning and the introduction of large 3D CAD
datasets like ShapeNet [2, 23], there have been some inspiring attempts in learning deep object
representations based on voxelized objects [13, 5, 19, 14, 18, 17]. Different from part-based models,
their generative approach aims to synthesize new objects based on learned hierarchical object repre-
sentations. This is an encouraging approach, but there is room for improvement on the performance
of object synthesis.

In this paper, drawing on recent advances in general-adversarial 2D image modeling [6, 15] and
volumetric convolutional networks [13, 23], we demonstrate that modeling volumetric objects in a
generative-adversarial manner could be a promising solution which captures the best of both worlds.
Different from traditional heuristic criteria, generative-adversarial modeling introduces an additional
adversarial discriminator to classify synthesized vs. real objects. This could be a particularly favorable
framework for 3D object modeling: as 3D objects are highly structured, a generative-adversarial
criterion, but not a voxel-wise independent heuristic one, has the potential to capture the structural
difference of two 3D objects. The use of a generative-adversarial loss also arguably avoids possible
criterion-dependent overfitting (e.g., generating mean-shape-like, blurred objects when minimizing a
mean-squared error).

We show that our generative representation can be used to synthesize high-quality realistic objects,
and our discriminative representation can be used for 3D object recognition, achieving comparable
performance with recent supervised methods [13, 18], and outperforming other unsupervised methods
by a large margin. Our learned generative and discriminative representations also have wide applica-
tions. For example, we show that our network can be combined with a variational autoencoder [9, 10]
to directly reconstruct a 3D object from a 2D input image.

2 Models
In this section we first discuss how we build our framework, named 3D Generative Adversarial
Network (3D-GAN), by leveraging previous advances on volumetric convolutional networks and
generative adversarial nets. We then show how we can learn a variational autoencoder simultaneously
so that our framework can capture an image to 3D object mapping.
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Figure 1: The generator in 3D-GAN. The discriminator mostly mirrors the generator.
2.1 3D Generative Adversarial Network (3D-GAN)
As proposed in [6], the Generative Adversarial Network (GAN) consists of a generator and a
discriminator, where the discriminator tries to differentiate real objects and synthesized objects
generated by the generator, and the generator attempts to confuse the discriminator. In our 3D
Generative Adversarial Network (3D-GAN), the generator G maps a 200 dimensional latent vector z,
randomly sampled from a probabilistic latent space, to a 64× 64× 64 cube, representing an object
G(z) in 3D voxel space. The discriminator D gives its confidence D(x) of whether a 3D object input
x is real or synthesized by the generator.

Following [6], we use binary cross entropy as discriminator classification loss, and present our overall
adversarial loss function as

LVAN = logD(x) + log(1−D(G(z))), (1)

where x are real objects in a 64× 64× 64 voxel space, and z are randomly sampled noise vectors
from a noise distribution p(z). In this work, p(z) is an i.i.d. uniform distribution over [0, 1].
Network Structure Inspired by [15], we design an all-convolutional neural network to generate
3D objects. As shown in Figure 1, the generator consists of five volumetric fully convolutional layers
of kernel sizes 4× 4× 4 and strides 2, with batch normalization and ReLU layers added in between
and a Sigmoid layer at the end. The discriminator basically mirrors the generator, except that it uses
Leaky ReLU [12] instead of ReLU layers. There are no pooling or linear layers in our network.
Training Details Since the discriminator usually learns much faster than the generator, in which
case the generator extracts no signals as all examples it generated would be identified as synthetic
objects by the discriminator. Therefore, to keep the training of both networks in pace, we employ an
adaptive training strategy: for each batch, the discriminator only gets updated if its accuracy in last
batch is not higher than 80%. We observe this helps to stabilize the training.

2.2 3D-VAE-GAN
To map images to the latent representation, we introduce VAE-VAN, an extention to VAN that can
recover the 3D geometry of an object from a 2D image. We add an additional image encoder E
to VAN, which takes a 2D image as input and outputs the latent representation vector z. This is
inspired by VAE-GAN proposed by [10], which combines a variational autoencoder and a generative
adversarial net by sharing the decoder component of VAE and the generator component of GAN.

The image encoder consists of five spatial convolution layers with kernel size {11, 5, 5, 5, 8} and
strides {4, 2, 2, 2, 1}, respectively. There are batch normalization and ReLU layers in between, and a
sampler at the end to sample a 200 dimensional vector used by the 3D-GAN. The structure of the
generator and the discriminator is the same as those in Section 2.1.

Similar to VAE-GAN [10], our loss function consists of three parts: an object reconstruction loss
Lrecon, a cross entropy lossLVAN for 3D-GAN, and a KL divergence lossLKL to restrict the distribution
of the output of the encoder. Formally, these loss functions write as

L = LVAN + α1LKL + α2Lrecon, (2)

where α1 and α2 are weights of the KL divergence loss and the reconstruction loss. We have

LVAN = logD(x) + log(1−D(G(z))) + log(1−D(G(E(y)))), (3)
LKL = DKL(q(z|y) || p(z)), (4)
Lrecon = ||G(E(y))− x||2, (5)

where x is a 3D shape from the training set, y is its corresponding 2D image, and q(z|y) is the
variational distribution of the latent representation z. The KL-divergence pushes this variational
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Figure 2: Objects generated by 3D-GAN from vectors, without a reference image/object. We show,
for the last two objects in each row, the nearest neighbor retrieved from the training set. We see that
the generated objects are similar, but not identical, to examples in the training set.

Supervision Pretraining Method Classification (Accuracy)

ModelNet40 ModelNet10

Category labels

ImageNet MVCNN [19] 90.1% -
MVCNN-MultiRes [14] 91.4% -

None

3D ShapeNets [23] 77.3% 83.5%
DeepPano [18] 77.6% 85.5%
VoxNet [13] 83.0% 92.0%
ORION [16] - 93.8%

Unsupervised -

SPH [8] 68.2% 79.8%
LFD [4] 75.5% 79.9%
T-L Network [5] 74.4% -
VConv-DAE [17] 75.5% 80.5%
3D-GAN (ours) 83.3% 91.0%

Table 1: Classification results on the ModelNet dataset. Our 3D-GAN outperforms other unsupervised
learning methods by a large margin, while being comparable to some recent voxel-based supervised
learning frameworks.

distribution towards to the prior distribution p(z), so that the generator can sample the latent repre-
sentation from the same distribution p(z). In this work, we choose p(z) as i.i.d. Gaussian distribution
N(0, I). For more details, please refer to [10].

3 Evaluation
In this section, we evaluate the unsupervisedly learned representation by the discriminator, by using
them as features for 3D object classification. We show both qualitative and quantitative results on the
popular benchmark ModelNet [23]. Further, we evaluate our 3D-VAE-GAN on 3D object recovery
from a single image, and show both qualitative and quantitative results on the IKEA dataset [11].

3.1 3D-GAN Qualitative Results
Figure 2 shows 3D objects generated by our 3D-GAN. For this experiment, we trained a 3D-GAN for
each object category. For generation, we sample 200-dimensional vectors following an i.i.d. uniform
distribution over [0, 1].

When synthesized results get better, a natural concern is whether the network is simply memorizing
objects from training data. We show that the network is generalizing beyond the training set by
comparing synthesized objects with their nearest neighbor in the training set. Note that finding nearest
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Figure 3: Qualitative results on IKEA [11], from 3D-VAE-GAN separately trained for each class

Method Bed Bookcase Chair Desk Sofa Table Overall

AlexNet-fc8 [5] 29.5 17.3 20.4 19.7 38.8 16.0 19.8
AlexNet-conv4 [5] 38.2 26.6 31.4 26.6 69.3 19.1 31.1
T-L Network [5] 56.3 30.2 32.9 25.8 71.7 23.3 38.3

3D-VAE-GAN (jointly trained) 49.1 31.9 42.6 34.8 79.8 33.1 45.2
3D-VAE-GAN (separately trained) 63.2 46.3 47.2 40.7 78.8 42.3 53.1

Table 2: Average precision for voxel prediction on the IKEA dataset

neighbors for a 3D object is a non-trivial problem, and using L2 distance on voxel level does not
produce reasonable results due to possible translation and scale difference. We find that using the
output of the last convolutional layer in our discriminator (with a 2x pooling) for retrieval gives good
matches. We observe from Figure 2 that generated objects are similar, but not identical, to examples
in the training set. There exist many reasonable variations that make the generated objects novel.

3.2 3D Object Classification
We then evaluate the representations learned by our discriminator. A typical way of evaluating
representation that are learned without supervision is to use them as features for classification using
linear SVM. Here we use the second to last layer of the discriminator as the feature representation
for an input 3D object. We train a single 3D-GAN on the seven major object categories (chairs,
sofas, tables, boats, airplanes, rifles, and cars) in the ShapeNet [2] training set. This also tests the
out-of-category generalization ability of 3D-GAN.

Following [23, 17, 13, 14], we use ModelNet [23] for this task. We compare with the state-of-the-
art methods [23, 5, 17, 16] and show per-class accuracy in Table 1. Specifically, our framework
outperforms other features learned without supervision [5, 17] by a large margin (83.3% vs. 75.5%
on ModelNet 40, and 91.0% vs 80.5% on ModelNet 10). Further, our classification accuracy is
also higher than some recent supervised methods [18] and close to the state-of-the-art voxel-based
supervised learning approaches [13, 16]. Multi-view CNNs [19, 14] outperforms us, though their
method is designed for classification, and requires rendered multi-view images and an ImageNet-
pretrained model.

3.3 Single Image 3D Reconstruction
As an application, our show that the 3D-VAE-GAN can perform well single image 3D reconstruction.
Following previous work [5], we test it on all six categories of the IKEA dataset [11]: bed, bookcase,
chair, desk, sofa, and table. We crop the images so that the objects are centered in the images, and
show both qualitative and quantitative results.

We show our results in Figure 3 and Table 2. Following [5], we evaluate results at resolution
20× 20× 20, use average precision as our evaluation metric, and attempt to align each prediction
with the ground-truth over permutations, flips, and translational alignments (up to 10%), as IKEA
ground truth objects are not in a canonical viewpoint. We see that our model consistently outperforms
previous state-of-the-art in voxel-level prediction and other baseline methods.

4 Conclusion
In this paper, we proposed 3D-GAN for 3D object generation, as well as 3D-VAE-GAN for learning an
image to 3D model mapping. We demonstrated that 3D-GAN and 3D-VAE-GAN are able to generate
novel objects and also reconstruct 3D objects from images. We also showed that the discriminator
in GAN, learned without supervision, can be used as an informative feature representation for 3D
objects, and showed its performance on object classification.
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