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3D Shape representations

● Meshes
● Point clouds
● Implicit surfaces / potentials
● Voxels
● Set of 2D projections Regular size, good to go in CNN

Irregular size, not clear how to use in NN

Not really 3D, 2D CNNs are powerful enough already



Sparsity of voxel representation

Mean sparsity for all classes of ModelNet40 
train dataset at voxel resolution 40 equal to  
5.5%.



SparseConvNet
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PySparseConvNet
● Python wrapper for SparseConvNet, with extended functionality.
● Fixed several Memory issues that prevented large scale learning.
● Made possible to use different loss functions.
● Made layer activations accessible to debugging.
● Interactivity for exploration of models — a way to perform operations step by 

step, to explore properties of models.



Shape Retrieval
Problem statement

Given a query object find several the most “similar” to the query objects from the 
given database.

The objects are considered to be similar if they belong to the same category of 
objects and have similar shapes.



Shape Retrieval
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Triplet loss

The representation can be efficiently learned by minimizing triplet loss.

Triplet is a set (a, p, n), where

● a is an anchor object
● p is a positive object - an object that is similar to anchor object
● n is a negative object - an object that is not similar to anchor object

                                                    ,
     where      is a margin parameter,      and      are distances between p and a and     
     n and a



Our approach

● Use very large resolutions, and sparse 
representations.

● Used triplet learning for 3D shapes.
● Used Large Scale Shape Datasets ModelNet.



Network description



Forward Pass Activations



Training Dynamics

Constant Learning Rate = 0.002

Can finish learning when all samples
outside of margin.

Optimisation algorithm:
Nesterov Accelerated Gradient with momentum = 0.99

Can finish learning when all samples
outside of margin.



Obligatory t-SNE



Experimental results method Classification Retrieval AUC Retrieval 
mAP

3DShapeNet 77.32% 49.94% 49.23%

MVCNN 90.10% --- 80.20%

3DSCNN 90.3% 47.30% 45.16%

S3DCNN + 
triplet --- 48.81% 46.71%



State-of-the-art Algorithm ModelNet40
Classification

ModelNet40
Retrieval (mAP)

Geometry Image [13] 83.9% 51.3%

Set-convolution [11] 90%

3D-GAN [10] 83.3%

VRN Ensemble [9] 95.54%

FusionNet [7] 90.8%

Pairwise [6] 90.7%

MVCNN [3] 90.1% 79.5%

GIFT [5] 83.10% 81.94%

VoxNet [2] 83%

DeepPano [4] 77.63% 76.81%

3DShapeNets [1] 77% 49.2%
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Conclussions

● For Modelnet in voxel form - resolution beyond 30^3 
doesn’t improves much

● More voxels - change scale of features, probably needs 
more layers

● Quality of representation depends on RS non smoothly 
but is maxed around render size of 55
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