3D Deep Learning on Geometric Forms

Hao Su

Stanford University

Many 3D representations are available

Candidates:

Novel view image synthesis

[Su et al., ICCV15] [Dosovitskiy et al., ECCV16]

Candidates:

multi-view images

depth map

volumetric

polygonal mesh

point cloud

primitive-based CAD models

Candidates:

Candidates:

Candidates:

Candidates:

Candidates:

Two groups of representations

Candidates:

Rasterized form (regular grids)

Geometric form (irregular)

Extant 3D DNNs work on grid-like representations

Candidates:

Ideally, a 3D representation should be

Friendly to learning

- easily formulated as the input/output of a neural network
- fast forward-/backward- propagation
- etc.

Ideally, a 3D representation should be

Friendly to learning

- easily formulated as the input/output of a neural network
- fast forward-/backward- propagation
- etc.

Flexible

- can precisely model a great variety of shapes
- etc.

Ideally, a 3D representation should be

Friendly to learning

- easily formulated as the output of a neural network
- fast forward-/backward- propagation
- etc.

Flexible

- can precisely model a great variety of shapes
- etc.

Geometrically manipulable for networks

- geometrically deformable, interpolable and extrapolable for networks
- convenient to impose structural constraints
- etc.

Others

The problem of grid representations

Typical artifacts of volumetric reconstruction

Missing or extra thin structures

Volumes are hard for **the network** to rotate / deform / interpolate

Learn to analyze / generate Geometric Forms?

Candidates:

Rasterized form (regular grids)

Geometric form (irregular)

Motivation

3D point cloud / CAD model reconstruction

3D point cloud analysis, e.g., segmentation

3D point clouds

A dual formulation of occupancy

Flexibility

Geometric manipulability

Affability to learning

Result: 3D reconstruction from real Images

Input

Reconstructed 3D point cloud

Result: 3D reconstruction from real Images

Input

Reconstructed 3D point cloud

An end-to-end synthesis-for-learning system

Network architecture: Vanilla version

Fully connected layer as predictor in standard classification network

Network architecture: Vanilla version

Fully connected layer as predictor in standard classification network

Natural statistics of geometry

 Many objects, especially man-made objects, contain large smooth surfaces

• Deconvolution can generate locally smooth textures for images

Network architecture: Output from deconv branch

Two branch version

Network architecture: Output from deconv branch

Two branch version

Network architecture: Output from deconv branch

Two branch version

Network architecture: The role of two branches

blue: deconv branch – large, consistent, smooth structures

red: fully-connected branch – flexibly reconstruct intricate structures

Distance metrics between point sets

Given two sets of points, measure their discrepancy

Common distance metrics

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Optimal case: Earth Mover's distance (EMD)

Common distance metrics

Worst case: Hausdorff distance (HD)

$$d_{\text{HD}}(S_1, S_2) = \max\{\max_{x_i \in S_1} \min_{y_j \in S_2} \|x_i - y_j\|, \max_{y_j \in S_2} \min_{x_i \in S_1} \|x_i - y_j\|\}$$

A single farthest pair determines the distance. In other words, **not robust to outliers!**

Common distance metrics

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD) $d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$

Average all the nearest neighbor distance by nearest neighbors
Common distance metrics

where $\phi: S_1 \to S_2$ is a bijection.

Solves the optimal transportation (bipartite matching) problem!

Required properties of distance metrics

Geometric requirement

- Induces a nice shape space
- In other words, a good metric should reflect the natural shape differences

Computational requirement

• Defines a loss that is numerically easy to optimize

Required properties of distance metrics

Geometric requirement

- Induces a nice shape space
- In other words, a good metric should reflect the natural shape differences

Computational requirement

• Defines a loss that is numerically easy to optimize

How distance metric affects the learned geometry?

A fundamental issue: there is always uncertainty in prediction

By loss minimization, the network tends to predict a "mean shape" that averages out uncertainty in geometry

How distance metric affects the learned geometry?

A fundamental issue: there is always uncertainty in prediction, due to

- limited network ability
- Insufficient training data
- inherent ambiguity of groundtruth for 2D-3D dimension lifting
- etc.

By loss minimization, the network tends to predict a "mean shape" that averages out uncertainty in geometry

Mean shapes are affected by distance metric

The mean shape carries characteristics of the distance metric

$$\bar{x} = \underset{x}{\operatorname{argmin}} \mathbb{E}_{s \sim \mathbb{S}}[d(x, s)]$$

Chamfer mean

Mean shapes from distance metrics

Input

The mean shape carries characteristics of the distance metric

$$\bar{x} = \underset{x}{\operatorname{argmin}} \mathbb{E}_{s \sim \mathbb{S}}[d(x, s)]$$

EMD mean

Chamfer mean

Comparison of predictions by CD versus EMD

Lower prediction uncertainty, better mean shapes

Can we reduce prediction uncertainty by

factoring out the inherent ambiguity of groundtruth?

Predict multiple candidates

Build a conditional shape sampler $\mathbb{G}(I, r)$

- r is a random variable to perturb input
- Can navigate the groundtruth distribution

Can be trained by conditional VAE or our MoN loss

Multiple plausible 3D shape predictions

45 deg

side view

Required properties of distance metrics

Geometric requirement

- Induces a nice shape space
- In other words, a nice metric should reflect the natural shape difference

Computational requirement

• Defines a loss function that is numerically easy to optimize

Computational requirement of metrics

To be used as a loss function, the metric has to be

- **Differentiable** with respect to point locations
- Efficient to compute

Computational requirement of metrics

• **Differentiable** with respect to point location

Chamfer distance

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

Earth Mover's distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$
 where $\phi: S_1 \to S_2$ is a bijection.

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence does not change

Conclusion: differentiable almost everywhere

Computational requirement of metrics

• **Efficient** to compute

Chamfer distance: trivially parallelizable on CUDA

Earth Mover's distance:

- Use coarse-to-fine approximation algorithm (Bertsekas, 1985)
- Quite good approximation ratio
- Parallelizable

Training

Implemented in TensorFlow (python)

Converge in ~2 days (the two branch version)

Trained on 4 GPUs in parallel

Training data rendered from **220K** shapes in ShapeNet, covering **~2K** categories

More Results

More visual results

Good symmetry

View 1

View 2

Prediction

More visual results

Good details

View 1

View 2

Input

Prediction

Real-world results

Comparison with state-of-the-art (volumetric)

Comparison with state-of-the-art (volumetric)

Error metric: Chamfer Distance

Shape completion from depth map

How about learning to predict geometric forms?

Candidates:

Rasterized form (regular grids)

Geometric form (irregular)

Primitive-based assembly

We **learn** to predict a corresponding shape composed by primitives. It allows us to predict **consistent** compositions across objects.

Unsupervised parsing

Each point is colored according to the assigned primitive

Approach – predict a high-dimensional point set

Primitive parameters as a point: size, rotation, translation of M cuboids.

Variable number of parts? We predict "primitive existence probability"

Loss function

Chamfer distance!

Consistent primitive configurations

Primitive locations are **consistent** due to the **smoothness** of primitive prediction network

Unsupervised parsing

Method	[31] (initial)	[31] (refined)	Ours
Accuracy	78.6	84.8	89.0

Mean accuracy (face area) on Shape COSEG chairs.

Motivation

3D point cloud / CAD model reconstruction

3D point cloud analysis

Deep Learning on Point Sets

PointNet: deep net for unordered point set input

Idea 1: Sort★Idea 2: RNN★Idea 3: Use symmetry function✓E.g. max, sum, weighted sum, L-norm, histogram, polynomial etc.

Universal approximation to continuous set functions

Theorem 1. Suppose $f : \mathcal{X} \to \mathbb{R}$ is a continuous set function w.r.t Hausdorff distance $d_H(\cdot, \cdot)$. $\forall \epsilon > 0$, \exists a continuous function h and a symmetric function $g(x_1, \ldots, x_n) = \gamma \circ MAX$, such that for any $S \in \mathcal{X}$,

$$\left| f(S) - \gamma \left(\max_{x_i \in S} \{ h(x_i) \} \right) \right| < \epsilon$$

where x_1, \ldots, x_n is the full list of elements in S ordered arbitrarily, γ is a continuous function, and MAX is a vector max operator that takes n vectors as input and returns a new vector of the element-wise maximum.

Robustness to data corruption

Partial object part segmentation

Visualization of what are learned, by reconstruction

To sum up

- We explore geometric representations as input / output of networks
- A space rich of open problems and opportunities
- Papers:

Hao Su*, Haoqiang Fan*, Leonidas Guibas, A Point Set Generation Network for 3D Object Reconstruction from a Single Image, arxiv

Hao Su*, Charles Qi*, Kaichun Mo, Leonidas Guibas, PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, arxiv

Shubham Tulsiani, Hao Su, Leonidas Guibas, Alexei Efros, Jitendra Malik, Learning Shape Abstractions by Assembling Volumetric Primitives, arxiv

• Codes will be released soon!

Thank You!