Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Jiajun Wu*

Chengkai Zhang*

NIPS 2016

(* indicates equal contribution)

Outline

Synthesizing 3D shapes

Recognizing 3D structure

Outline

Synthesizing 3D shapes

Recognizing 3D structure

3D Shape Synthesis

Templated-based model

- Synthesizing realistic shapes
- Requiring a large shape repository
- Recombining parts and pieces

3D Shape Synthesis

Voxel-based deep generative model

- Synthesizing new shapes
- Hard to scale up to high resolution
- Resulting in not-as-realistic shapes

Image credit: 3D ShapeNet [Wu et al., CVPR 2015]

3D Shape Synthesis

Realistic

New

Realistic + New

Adversarial Learning

Generative adversarial networks [Goodfellow et al., NIPS 2014]

DCGAN [Radford et al., ICLR 2016]

Our Synthesized 3D Shapes

3D Generative Adversarial Network

3D Generative Adversarial Network

Generator Structure

Results from 3D ShapeNet

Randomly Sampled Shapes

Tables

Results from 3D ShapeNet

Interpolation in Latent Space

Interpolation in Latent Space

Unsupervised 3D Shape Descriptors

3D Shape Classification

3D Shape Classification Results

Supervision	Pretraining	Mathad	Classification (Accuracy)		
Supervision			ModelNet40	ModelNet10	
Category labels	ImageNet	MVCNN [Su et al., 2015]	90.1%	_	
		MVCNN-MultiRes [Qi et al., 2016]	91.4%	-	
	None	3D ShapeNets [Wu et al., 2015]	77.3%	83.5%	
		DeepPano [Shi et al., 2015]	77.6%	85.5%	
		VoxNet [Maturana and Scherer, 2015]	83.0%	92.0%	
		ORION [Sedaghat et al., 2016]	_	93.8%	
		SPH [Kazhdan et al., 2003]	68.2%	79.8%	
Unsupervised	-	LFD [Chen et al., 2003]	75.5%	79.9%	
		T-L Network [Girdhar et al., 2016]	74.4%	-	
		Vconv-DAE [Sharma et al., 2016]	75.5%	80.5%	
		3D-GAN (ours)	83.3%	91.0%	

3D Shape Classification Results

Supervision	Pretraining	Mathad	Classification (Accuracy)		
Supervision		Method	ModelNet40	ModelNet10	
	ImageNet	MVCNN [Su et al., 2015]	90.1%	_	
		MVCNN-MultiRes [Qi et al., 2016]	91.4%	_	
Catagory Jabols	None	3D ShapeNets [Wu et al., 2015]	77.3%	83.5%	
Category labels		DeepPano [Shi et al., 2015]	77.6%	85.5%	
		VoxNet [Maturana and Scherer, 2015]	83.0%	92.0%	
		ORION [Sedaghat et al., 2016]	_	93.8%	
		SPH [Kazhdan et al., 2003]	68.2%	79.8%	
	_	LFD [Chen et al., 2003]	75.5%	79.9%	
Unsupervised		T-L Network [Girdhar et al., 2016]	74.4%	-	
		Vconv-DAE [Sharma et al., 2016]	75.5%	80.5%	
		3D-GAN (ours)	83.3%	91.0%	

3D Shape Classification Results

Supervision	Pretraining	Mathad	Classification (Accuracy)		
Supervision		Method	ModelNet40	ModelNet10	
Category labels	ImageNet	MVCNN [Su et al., 2015]	90.1%	_	
		MVCNN-MultiRes [Qi et al., 2016]	91.4%	_	
		3D ShapeNets [Wu et al., 2015]	77.3%	83.5%	
	None	DeepPano [Shi et al., 2015]	77.6%	85.5%	
		VoxNet [Maturana and Scherer, 2015]	83.0%	92.0%	
		ORION [Sedaghat et al., 2016]	_	93.8%	
		SPH [Kazhdan et al., 2003]	68.2%	79.8%	
	_	LFD [Chen et al., 2003]	75.5%	79.9%	
Unsupervised		T-L Network [Girdhar et al., 2016]	74.4%	_	
		Vconv-DAE [Sharma et al., 2016]	75.5%	80.5%	
		3D-GAN (ours)	83.3%	91.0%	

Limited Training Samples

Comparable with best unsupervisedly learned features with about 25 training samples/class

Comparable with best voxel-based supervised descriptors with the entire training set

Discriminator Activations

Units respond to certain object shapes and their parts.

Extension: Single Image 3D Reconstruction

Model: 3D-VAE-GAN

A variational image encoder maps an image to a latent vector for 3D object reconstruction. VAE-GAN [Larson et al., ICML 2016], TL-Network [Girdhar et al., ECCV 2016]

Model: 3D-VAE-GAN

We combine the encoder with 3D-GAN for reconstruction and generation.

Single Image 3D Reconstruction

Input image Reconstructed 3D shape

Input image Reconstructed 3D shape

Single Image 3D Reconstruction

	Bed	Bookcase	Chair	Desk	Sofa	Table	Mean
AlexNet-fc8 [Girdhar et al., 2016]	29.5	17.3	20.4	19.7	38.8	16.0	23.6
AlexNet-conv4 [Girdhar et al., 2016]	38.2	26.6	31.4	26.6	69.3	19.1	35.2
T-L Network [Girdhar et al., 2016]	56.3	30.2	32.9	25.8	71.7	23.3	40.0
Our 3D-VAE-GAN (jointly trained)	49.1	31.9	42.6	34.8	79.8	33.1	45.2
Our 3D-VAE-GAN (separately trained)	63.2	46.3	47.2	40.7	78.8	42.3	53.1

Average precision on IKEA dataset [Lim et al., ICCV 2013]

Contributions of 3D-GAN

- Synthesizing new and realistic 3D shapes via adversarial learning
 - Exploring the latent shape space
- Extracting powerful shape descriptors for classification
- Extending 3D-GAN for single image 3D reconstruction

Outline

3D-GAN: Synthesizing 3D shapes

Recognizing 3D structure

Single Image 3D Interpreter Network

Jiajun Wu*

Bill Freeman

ECCV 2016

(* indicates equal contribution)

3D Object Representation

Voxel

Girdhar et al. '16 Choy et al. '16 Xiao et al. '12

Mesh

Goesele et al. '10 Furukawa and Ponce, '07 Lensch et al. '03

Skeleton

Zhou et al. '16 Biederman et al. '93 Fan et al. '89

Goal

Skeleton Representation

3D Skeleton to 2D Image

Goal

 $P, R, \vec{\alpha}, T$

Approach I: Using 3D Object Labels

ObjectNet3D [Xiang et al, 16]

Approach II: Using 3D Synthetic Data

ObjectNet3D [Xiang et al, 16]

Render for CNN [Su et al, '15] Multi-view CNNs [Dosovitskiy et al, '16] TL network [Girdhar et al, '16] PhysNet [Lerer et al, '16]

Intermediate 2D Representation

3D INterpreter Network (3D-INN)

3D-INN: Image to 2D Keypoints

 $\{ \alpha, T, R, f \}$ Using 2D-annotated real data Input: an RGB image Output: keypoint heatmaps

3D-INN: 2D Keypoints to 3D Skeleton

3D-INN: Initial Design

Initial Results

Image

Inferred 3D Skeleton

Errors in the first stage propagate to the second

3D-INN: End-to-End Training?

3D-INN: End-to-End Training?

3D-INN: 3D-to-2D Projection Layer

 $P(R\sum_{k=1}^{K} \alpha_k B_k + T)$ 3D-to-2D projection is fully differentiable.

3D-INN: 3D-to-2D Projection Layer

Using 2D-annotated real data Input: an RGB image Output: keypoint coordinates

Objective function:

$$\min \left\| \left| P(R \sum_{k=1}^{K} \alpha_k B_k + T) - X_{2D} \right| \right\|_2$$

3D-INN: Training Paradigm

Three-step training paradigm II: 3D Interpreter I: 2D Keypoint Estimation III: End-to-end Finetuning

Refined Results

Training: our Keypoint-5 dataset, 2K images per category

Keypoint-5 dataset

Training: our Keypoint-5 dataset, 2K images per category

IKEA Dataset [Lim et al, '13]

Training: our Keypoint-5 dataset, 2K images per category

SUN Database [Xiao et al, '11]

Training: our Keypoint-5 dataset, 2K images per category

SUN Database [Xiao et al, '11]

3D Structure Estimation

Average recall (%)

Viewpoint Estimation

Results Images

Method	Table	Sofa	Chair	Avg.
3D-INN	55.0	64.7	63.5	60.3
Su, ' 15	52.7	35.7	37.7	43.3

Average recall (%)

Localization and Viewpoint Estimation

Category	VDPM	DPM+VP	Su et al.	V & K	3D-INN
Chair	6.8	6.1	15.7	25.1	23.1
Sofa	5.1	11.8	18.6	43.8	45.8
				. [\	

Viewpoint estimation on the PASCAL 3D+ dataset [Xiang et al, '14]

Chair Embedding

Manifold of chairs based on their inferred viewpoint

Contributions of 3D-INN

- Single image 3D perception
 - Real 2D labels + synthetic 3D models, connected via keypoints
 - A 3D-to-2D projection layer for end-to-end training

Summary

3D-GAN: Synthesizing 3D shapes

3D-INN: Recognizing 3D structure

