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3D Shape Synthesis

Templated-based model
• Synthesizing realistic shapes

• Requiring a large shape repository

• Recombining parts and pieces
Image credit: [Huang et al., SGP 2015]



3D Shape Synthesis

Image credit: 3D ShapeNet
[Wu et al., CVPR 2015]

Voxel-based deep generative model
• Synthesizing new shapes

• Hard to scale up to high resolution

• Resulting in not-as-realistic shapes



3D Shape Synthesis

Realistic + New

Realistic New



Adversarial Learning

Generative adversarial networks
[Goodfellow et al., NIPS 2014]

DCGAN [Radford et al., ICLR 2016]



Our Synthesized 3D Shapes

Latent vector



3D Generative Adversarial Network

Real shape

Real? 

Training on ShapeNet [Chang et al., 2015]

Generated shapeLatent vector
or

Discriminator

Generator



3D Generative Adversarial Network

Real shape
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Generator Structure

Latent
vector

G(z) in 3D Voxel Space
64×64×64

512×4×4×4
256×8×8×8

128×16×16×16 64×32×32×32



Randomly Sampled Shapes

Chairs Sofas

Results from 3D ShapeNet



Randomly Sampled Shapes

CarsTables

Results from 3D ShapeNet



Interpolation in Latent Space



Interpolation in Latent Space

Car Boat
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Unsupervised 3D Shape Descriptors

Shape Discriminator

Extracted Mid-level
Features

Real?



3D Shape Classification

Shape Discriminator

Real?

Extracted Mid-level
Features

Linear SVM Chair



Supervision Pretraining Method
Classification (Accuracy)

ModelNet40 ModelNet10

Category labels

ImageNet
MVCNN [Su et al., 2015] 90.1% -
MVCNN-MultiRes [Qi et al., 2016] 91.4% -

None

3D ShapeNets [Wu et al., 2015] 77.3% 83.5%
DeepPano [Shi et al., 2015] 77.6% 85.5%
VoxNet [Maturana and Scherer, 2015] 83.0% 92.0%
ORION [Sedaghat et al., 2016] - 93.8%

Unsupervised -

SPH [Kazhdan et al., 2003] 68.2% 79.8%
LFD [Chen et al., 2003] 75.5% 79.9%
T-L Network [Girdhar et al., 2016] 74.4% -
Vconv-DAE [Sharma et al., 2016] 75.5% 80.5%
3D-GAN (ours) 83.3% 91.0%

3D Shape Classification Results
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3D Shape Classification Results



Limited Training Samples

Comparable with best unsupervisedly learned 
features with about 25 training samples/class 

Comparable with best voxel-based supervised 
descriptors with the entire training set



Discriminator Activations

Units respond to certain object shapes and their parts.



Extension: Single Image 3D Reconstruction



Model: 3D-VAE-GAN

Mapped latent
vector

Variational 
image encoder

Image
input

Reconstructed
shape

A variational image encoder maps an image to a latent vector for 3D object reconstruction.
VAE-GAN [Larson et al., ICML 2016], TL-Network [Girdhar et al., ECCV 2016]

Generator



Model: 3D-VAE-GAN

Generator Generated 
shape

Latent vector

Real shape

Discriminator

Mapped latent
vector

Variational 
image encoder

Image
input

Reconstructed
shape

We combine the encoder with 3D-GAN for reconstruction and generation.



Input
image

Reconstructed
3D shape

Input
image
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3D shape

Single Image 3D Reconstruction



Single Image 3D Reconstruction

Bed Bookcase Chair Desk Sofa Table Mean
AlexNet-fc8 [Girdhar et al., 2016] 29.5 17.3 20.4 19.7 38.8 16.0 23.6
AlexNet-conv4 [Girdhar et al., 2016] 38.2 26.6 31.4 26.6 69.3 19.1 35.2
T-L Network [Girdhar et al., 2016] 56.3 30.2 32.9 25.8 71.7 23.3 40.0
Our 3D-VAE-GAN (jointly trained) 49.1 31.9 42.6 34.8 79.8 33.1 45.2
Our 3D-VAE-GAN (separately trained) 63.2 46.3 47.2 40.7 78.8 42.3 53.1

Average precision on IKEA dataset [Lim et al., ICCV 2013]



Contributions of 3D-GAN
• Synthesizing new and realistic 3D shapes via adversarial learning
• Exploring the latent shape space

• Extracting powerful shape descriptors for classification

• Extending 3D-GAN for single image 3D reconstruction



Outline
Recognizing 3D structure



Single Image 3D Interpreter Network
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3D Object Representation

Mesh Base shape 2 Base shape 4Base shape 3Base shape 1 SkeletonVoxel
Girdhar et al. ’16
Choy et al. ’16
Xiao et al. ’12

Zhou et al. ’16
Biederman et al. ’93

Fan et al. ’89

Goesele et al. ’10
Furukawa and Ponce, ’07 

Lensch et al. ’03



Goal



Skeleton Representation
𝐵2 𝐵4𝐵3𝐵1

structure
parameter



3D Skeleton to 2D Image
𝐵2 𝐵4𝐵3𝐵1

(c) Estimated 3D skeleton (d) Labeled 2D keypoints(a) Input (b) Heatmaps of 2D keypoints

Trained on real images

Pre-trained on 
real images

Pre-trained on 
synthetic shapes

structure
parameter

rotation translation
projection



Goal



Approach I: Using 3D Object Labels

ObjectNet3D [Xiang et al, 16]



Approach II: Using 3D Synthetic Data

ObjectNet3D [Xiang et al, 16]

Render for CNN [Su et al, ’15]
Multi-view CNNs [Dosovitskiy et al, ’16]
TL network [Girdhar et al, ’16]
PhysNet [Lerer et al, ’16]



Intermediate 2D Representation

Real images with
2D keypoint labels

Synthetic 
3D models

Only 2D labels!



3D INterpreter Network (3D-INN)

Real images with
2D keypoint labels

Synthetic 
3D models

Only 2D labels!
Ramakrishna et al. ’12
Grinciunaite et al. ’13



3D-INN: Image to 2D Keypoints

Refined Heatmaps2D Annotated Images

3D Skeletons
3D Parameters

2D Coordinates3D Synthetic Data

Keypoint RefinementInitial Keypoint Estimation Reconstruction3D Interpreter

(a) (b) (c) (d)

Initial Heatmaps

Projection Layer

Data or Supervision Network Connection

IMG

Inspired by Tompson et al. ’15

2D Keypoint
Estimation

Using 2D-annotated real data
Input: an RGB image
Output: keypoint heatmaps



3D-INN: 2D Keypoints to 3D Skeleton

Using 3D synthetic data
Input: rendered keypoint heatmaps
Output: 3D parameters 

Refined Heatmaps2D Annotated Images

3D Skeletons
3D Parameters

2D Coordinates3D Synthetic Data

Keypoint RefinementInitial Keypoint Estimation Reconstruction3D Interpreter

(a) (b) (c) (d)

Initial Heatmaps

Projection Layer

Data or Supervision Network Connection

IMG

3D 
Interpreter



3D-INN: Initial Design

Refined Heatmaps2D Annotated Images

3D Skeletons
3D Parameters

2D Coordinates3D Synthetic Data

Keypoint RefinementInitial Keypoint Estimation Reconstruction3D Interpreter

(a) (b) (c) (d)

Initial Heatmaps

Projection Layer

Data or Supervision Network Connection

IMG

Refined Heatmaps2D Annotated Images

3D Skeletons
3D Parameters

2D Coordinates3D Synthetic Data

Keypoint RefinementInitial Keypoint Estimation Reconstruction3D Interpreter

(a) (b) (c) (d)

Initial Heatmaps

Projection Layer

Data or Supervision Network Connection

IMG

3D 
Interpreter

2D Keypoint
Estimation



Initial Results
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Errors in the first stage propagate to the second
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Image
Inferred Keypoint

Heatmap
Inferred 3D 
Skeleton



3D-INN: End-to-End Training?
No 3D Labels Available

3D 
Interpreter

2D Keypoint
Estimation



3D-INN: End-to-End Training?

3D 
Interpreter

(c) Estimated 3D skeleton (d) Labeled 2D keypoints(a) Input (b) Heatmaps of 2D keypoints

Trained on real images

Pre-trained on 
real images

Pre-trained on 
synthetic shapes

2D Keypoint Labels

2D Keypoint
Estimation



3D-INN: 3D-to-2D Projection Layer

3D-to-2D projection is fully differentiable.

3D-to-2D 
Projection

(c) Estimated 3D skeleton (d) Labeled 2D keypoints(a) Input (b) Heatmaps of 2D keypoints

Trained on real images

Pre-trained on 
real images

Pre-trained on 
synthetic shapes



3D-INN: 3D-to-2D Projection Layer

3D 
Interpreter

3D-to-2D 
Projection

Using 2D-annotated real data
Input: an RGB image                         
Output: keypoint coordinates

(c) Estimated 3D skeleton (d) Labeled 2D keypoints(a) Input (b) Heatmaps of 2D keypoints

Trained on real images

Pre-trained on 
real images

Pre-trained on 
synthetic shapes

2D Keypoint Labels

Objective function:

2D Keypoint
Estimation



3D-INN: Training Paradigm

3D 
Interpreter

3D-to-2D 
Projection

(c) Estimated 3D skeleton (d) Labeled 2D keypoints(a) Input (b) Heatmaps of 2D keypoints

Trained on real images

Pre-trained on 
real images

Pre-trained on 
synthetic shapes

2D Keypoint Labels

Three-step training paradigm I: 2D Keypoint Estimation
III: End-to-end FinetuningII: 3D Interpreter

2D Keypoint
Estimation



Refined Results
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3D Estimation: Qualitative Results
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Keypoint-5 dataset

Training: our Keypoint-5 dataset, 2K images per category
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3D Estimation: Qualitative Results
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Training: our Keypoint-5 dataset, 2K images per category

IKEA Dataset [Lim et al, ’13]



3D Estimation: Qualitative Results

SUN Database [Xiao et al, ’11]
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Training: our Keypoint-5 dataset, 2K images per category



3D Estimation: Qualitative Results
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Training: our Keypoint-5 dataset, 2K images per category

SUN Database [Xiao et al, ’11]



3D Structure Estimation
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Method Bed Sofa Chair Avg.

3D-INN 88.6 88.0 87.8 88.0

Zhou, ’16 52.3 58.0 60.8 58.5
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)

RMSE of estimated 3D keypoints on IKEA [Lim et al, ’13]

Average recall (%)
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Method Table Sofa Chair Avg.

3D-INN 55.0 64.7 63.5 60.3

Su,	’15 52.7 35.7 37.7 43.3
Average recall (%)
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Azimuth angular error on IKEA [Lim et al, ’13]



Localization and Viewpoint Estimation

Viewpoint estimation on the PASCAL 3D+ dataset [Xiang et al, ’14]

R-CNN
Girshick et al, ’14

Category VDPM DPM+VP Su et al. V & K 3D-INN
Chair 6.8 6.1 15.7 25.1 23.1
Sofa 5.1 11.8 18.6 43.8 45.8



Chair Embedding 

Manifold of chairs based on their inferred viewpoint



Contributions of 3D-INN
• Single image 3D perception
• Real 2D labels + synthetic 3D models, connected via keypoints
• A 3D-to-2D projection layer for end-to-end training

(c) Estimated 3D skeleton (d) Labeled 2D keypoints(a) Input (b) Heatmaps of 2D keypoints

Trained on real images

Pre-trained on 
real images

Pre-trained on 
synthetic shapes



Summary
3D-GAN: Synthesizing 3D shapes 3D-INN: Recognizing 3D structure


