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Structured	  Output	  Learning	  and	  Wasserstein	  Loss
• Strong	  prior on	  the	  output	  of	  the	  learned	  model:	  faults	  are	  fairly	  smooth,	  extended	  surfaces.
• We	  encode	  this	  smoothness	  prior	  via	  a	  novel	  loss	  function:	  the	  Wasserstein	  loss.	  It	  measures	  the	  optimal	  transport	  cost	  

between	  predicted	  and	  ground	  truth	  outputs.

• The	  matrix	  M is	  a	  ground	  metric	  matrix,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  with	  d	  the	  distance	  between	  two	  output	  locations	  k,	  k’.
• T	  is	  a	  transport	  plan	  which	  matches	  the	  mass	  in	  the	  prediction	  	  	  	  	  to	  the	  ground	  truth	  	  	  	  .

• Major	  difference	  with	  standard	  divergences:	  the	  Wasserstein	  loss	  differentiates	  between	  outputs	  that	  are	  small	  and	  large	  
shifts	  of	  ground	  truth,	  with	  respect	  to	  the	  ground	  metric.

• Learning	  requires	  computing	  gradient	  of	  the	  loss:	  this	  is	  a	  linear	  program,	  O(K3 log	  K) – often	  prohibitively	  complex.
• A	  regularized	  approximation	  is	  efficient	  to	  compute:

• Optimal	  transport	  plan	  is	  computed	  by	  an	  efficient	  matrix	  scaling iteration*.
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• Seismic	  imaging	   is	  an	  essential	  tool	  in	  oil	  and	  gas	  (O&G)	  exploration.
• Goal	  is	  to	  image	  the	  subsurface	  rock	  layers	  and	  other	  geological	  features,	  

using	  measurements	  typically	  comprising	   reflected	  sound	  waves recorded	  by	  
a	  hydrophone	   array	  at	  the	  surface.	  

• Faults	  are	  of	  significant	  interest in	  O&G	  exploration	  since	  the	  shifting	   rock	  
layers	  can	  trap	  liquid	  hydrocarbons	  and	  form	  reservoirs.

• The 3D	  structure	  of	  a	  fault network	  can	  be	  quite	  complex,	  representing	  a	  
challenge	  for	  structured	  output	  methods.	  

Example	  of	  
complex	  faulting	  
(from	  Mira	  
Geoscience)

Seismic
Traces
from
Wave 

Equation

Physics

Labels

Deep 
Learning Model Inputs

Fault Predictions

• The	  full	   inverse	  problem	   is	  ill-‐posed,	  but	   recovering	  
interesting	  geological	   features	  from	  the	  reflection	  waves	  
is	  possible	  with	  a	  properly	   learned	  geological	  prior	   from	  
the	  training	  data.

• Approach:	   learn	  a	  map	  from	  seismic	  recordings	   to	  
geological	  features	  (deep	  neural	  networks	  +	  structured	  
output	   learning).

• Simulate a	  large	  amount	  of	  training	  data	  using	  known	  
physics	  of	  wave	  propagation.

• The	  output	   is	  a	  3D	  grid	  of	  binary	  “voxels”	  indicating	  
whether	  a	  fault	  crosses	  each	  region.

Example	  of	  our	  
randomly	  synthesized	  

velocity	  model.

AUC IoU Hidden	  
layers

Nodes	  per	  
layer

Faults	  per	  
model

0.902 0.311 5 768 4
0.893 0.294 5 640 4
0.836 0.220 7 640 4
0.833 0.218 8 512 4
0.854 0.246 7 512 2
0.849 0.227 6 512 2
0.820 0.219 6 512 2*
0.718 0.130 4 1024 1
0.897 0.395 4 512 1
0.919 0.384 4 256 1

Comparison	  of	  the	  Wasserstein	  (left)	  and	  non-‐Wasserstein	  
(middle)	  -‐based	  predictions,	   IoU (Intersection	  over	  Union).	  Red	  
areas	  show	  false	  positives,	  green	  shows	  true	  positives	  (correct	  
predictions),	  and	  yellow	  shows	  false	  negative.	  	  Right	  shows	  a	  2D	  
slice	  of	  a	  3D	  model.	  The	  Wasserstein	  predictions	  have	  higher	  IoU
(amount	  of	  green).

Figure 2: Left: the workflow of our deep learning based fault prediction system. Right: 2D illustration
of the cross-entropy loss vs. the Wasserstein loss. The red cells are ground truth, and the blue cells
are predictions. The cross-entropy loss treats both predictions equally while the Wasserstein loss
favors the bottom figure for the spatial smoothness.

relationship among the K output cells could enforce strong smoothness information. Consider a
prediction that is slightly off the ground truth, and another one that is completely wrong, as shown in
Figure 2; the cross entropy loss cannot effectively distinguish the two different cases.

Alternatively, consider the following Wasserstein loss [1],

`W (ŷ, y) = min

T2⇧(ŷ,y)
hT,Mi, ⇧(ŷ, y) = {T 2 RK⇥K

+ : T1 = ŷ, T

>1 = y} (1)

where hT,Mi = tr(T>
M) is the inner-product, for a given ground metric matrix Mk,k0

= d(k, k

0
)

for some ground metric d(·, ·) on the output space. For our application, the output space is the 3D
grid of cells, and the natural metric is the Euclidean distance between the cells.

T in the loss term is a joint probability distribution that marginalize to the ground-truth and the
prediction. Intuitively, T defines a transportation plan that maps probability mass from the prediction
to the ground-truth, and hT,Mi measures the cost of this plan according to the ground metric. The
loss is then defined by the cost of the optimal feasible transportation plan. For the cases of Figure 2,
the Wasserstein loss for the bottom right figure will be smaller than the top right figure, due to the
longer the cost of this plan according to the ground metric. The loss is defined by the cost of the
optimal plan.

4 Results

We evaluated the performance of our deep learning approach on a set of synthetic, randomly generated
geophysical models and corresponding simulated measurements. The geophysical models had several
subsurface layers with varying rock properties, and either one or two major planar faults at random
orientations and locations. Seismic recordings were simulated for each model for a regularly spaced
array of 20 ⇥ 20 surface microphones, with 9 initial shots or impulses at evenly spaced surface
locations, using an acoustic approximation to the wave equation.

We trained a variety of fully-connected deep neural networks with 4 to 6 hidden layers of varying
numbers of units. The output of the networks was a 20⇥ 20⇥ 20 3D voxel grid, with each voxel’s
value indicating the likelihood of a fault being present within the voxel. Ground truth labels on the
same grid were binary-valued, indicating presence or not of a fault in each voxel. In all cases, we
used a Wasserstein loss function for training.

Table 1 shows the best results obtained, on several sets of simulated test data. We report the area
under the ROC curve (AUC) for the predictions, comparing predicted likelihoods for the voxels
containing a ground truth labeled fault to those not containing a fault. We also report the intersection
over union (IoU) value, averaged over the test set images, with predicted likelihoods thresholded at a
value chosen to maximize the average IoU over the images. For datasets with one and two planar
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>1 = y} (1)

where hT,Mi = tr(T>
M) is the inner-product, for a given ground metric matrix Mk,k0

= d(k, k

0
)

for some ground metric d(·, ·) on the output space. For our application, the output space is the 3D
grid of cells, and the natural metric is the Euclidean distance between the cells.

T in the loss term is a joint probability distribution that marginalize to the ground-truth and the
prediction. Intuitively, T defines a transportation plan that maps probability mass from the prediction
to the ground-truth, and hT,Mi measures the cost of this plan according to the ground metric. The
loss is then defined by the cost of the optimal feasible transportation plan. For the cases of Figure 2,
the Wasserstein loss for the bottom right figure will be smaller than the top right figure, due to the
longer the cost of this plan according to the ground metric. The loss is defined by the cost of the
optimal plan.

4 Results

We evaluated the performance of our deep learning approach on a set of synthetic, randomly generated
geophysical models and corresponding simulated measurements. The geophysical models had several
subsurface layers with varying rock properties, and either one or two major planar faults at random
orientations and locations. Seismic recordings were simulated for each model for a regularly spaced
array of 20 ⇥ 20 surface microphones, with 9 initial shots or impulses at evenly spaced surface
locations, using an acoustic approximation to the wave equation.

We trained a variety of fully-connected deep neural networks with 4 to 6 hidden layers of varying
numbers of units. The output of the networks was a 20⇥ 20⇥ 20 3D voxel grid, with each voxel’s
value indicating the likelihood of a fault being present within the voxel. Ground truth labels on the
same grid were binary-valued, indicating presence or not of a fault in each voxel. In all cases, we
used a Wasserstein loss function for training.

Table 1 shows the best results obtained, on several sets of simulated test data. We report the area
under the ROC curve (AUC) for the predictions, comparing predicted likelihoods for the voxels
containing a ground truth labeled fault to those not containing a fault. We also report the intersection
over union (IoU) value, averaged over the test set images, with predicted likelihoods thresholded at a
value chosen to maximize the average IoU over the images. For datasets with one and two planar

3

Figure 2: Left: the workflow of our deep learning based fault prediction system. Right: 2D illustration
of the cross-entropy loss vs. the Wasserstein loss. The red cells are ground truth, and the blue cells
are predictions. The cross-entropy loss treats both predictions equally while the Wasserstein loss
favors the bottom figure for the spatial smoothness.

relationship among the K output cells could enforce strong smoothness information. Consider a
prediction that is slightly off the ground truth, and another one that is completely wrong, as shown in
Figure 2; the cross entropy loss cannot effectively distinguish the two different cases.

Alternatively, consider the following Wasserstein loss [1],
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T2⇧(ŷ,y)
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Algorithm 1 Gradient of the Wasserstein loss

Given h(x), y, �, K. (�
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4 Efficient optimization via entropic regularization

To do learning, we optimize the empirical risk minimization functional (1) by gradient descent.
Doing so requires evaluating a descent direction for the loss, with respect to the predictions h(x).
Unfortunately, computing a subgradient of the exact Wasserstein loss (3), is quite costly, as follows.

The exact Wasserstein loss (3) is a linear program and a subgradient of its solution can be computed
using Lagrange duality. The dual LP of (3) is

dW p

p

(h(x), y) = sup

↵,�2CM

↵>h(x) + �>y, C
M

= {(↵,�) 2 RK⇥K

: ↵


+ �


0 M
,

0}. (5)

As (3) is a linear program, at an optimum the values of the dual and the primal are equal (see, e.g.
[17]), hence the dual optimal ↵ is a subgradient of the loss with respect to its first argument.

Computing ↵ is costly, as it entails solving a linear program with O(K2

) contraints, with K being
the dimension of the output space. This cost can be prohibitive when optimizing by gradient descent.

4.1 Entropic regularization of optimal transport

Cuturi [18] proposes a smoothed transport objective that enables efficient approximation of both the
transport matrix in (3) and the subgradient of the loss. [18] introduces an entropic regularization
term that results in a strictly convex problem:

�W p

p

(h(·|x), y(·)) = inf

T2⇧(h(x),y)

hT,Mi � 1

�
H(T ), H(T ) = �

X

,

0

T
,

0
log T

,

0 . (6)

Importantly, the transport matrix that solves (6) is a diagonal scaling of a matrix K = e��M�1:

T ⇤
= diag(u)Kdiag(v) (7)

for u = e�↵ and v = e�� , where ↵ and � are the Lagrange dual variables for (6).

Identifying such a matrix subject to equality constraints on the row and column sums is exactly a
matrix balancing problem, which is well-studied in numerical linear algebra and for which efficient
iterative algorithms exist [19]. [18] and [3] use the well-known Sinkhorn-Knopp algorithm.

4.2 Extending smoothed transport to the learning setting

When the output vectors h(x) and y lie in the simplex, (6) can be used directly in place of (3), as
(6) can approximate the exact Wasserstein distance closely for large enough � [18]. In this case, the
gradient ↵ of the objective can be obtained from the optimal scaling vector u as ↵ =

log u

�

� log u

>1
�K

1.
1 A Sinkhorn iteration for the gradient is given in Algorithm 1.

1Note that ↵ is only defined up to a constant shift: any upscaling of the vector u can be paired with a
corresponding downscaling of the vector v (and vice versa) without altering the matrix T

⇤. The choice ↵ =
log u
� � log u>1

�K 1 ensures that ↵ is tangent to the simplex.
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*Marco	  Cuturi.	  Sinkhorn Distances:	  Lightspeed Computation	   of	  Optimal	  Transport. In	  NIPS (2013).
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Ground	  truth	  faults	  and	  velocity	  model	  slice. Predicted	  faults	  and	  velocity	  model	  slice. Predicted	  faults	  and	  velocity	  model	  slice.Ground	  truth	  faults	  and	  velocity	  model	  slice.


