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Structured	
  Output	
  Learning	
  and	
  Wasserstein	
  Loss
• Strong	
  prior on	
  the	
  output	
  of	
  the	
  learned	
  model:	
  faults	
  are	
  fairly	
  smooth,	
  extended	
  surfaces.
• We	
  encode	
  this	
  smoothness	
  prior	
  via	
  a	
  novel	
  loss	
  function:	
  the	
  Wasserstein	
  loss.	
  It	
  measures	
  the	
  optimal	
  transport	
  cost	
  

between	
  predicted	
  and	
  ground	
  truth	
  outputs.

• The	
  matrix	
  M is	
  a	
  ground	
  metric	
  matrix,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  with	
  d	
  the	
  distance	
  between	
  two	
  output	
  locations	
  k,	
  k’.
• T	
  is	
  a	
  transport	
  plan	
  which	
  matches	
  the	
  mass	
  in	
  the	
  prediction	
  	
  	
  	
  	
  to	
  the	
  ground	
  truth	
  	
  	
  	
  .

• Major	
  difference	
  with	
  standard	
  divergences:	
  the	
  Wasserstein	
  loss	
  differentiates	
  between	
  outputs	
  that	
  are	
  small	
  and	
  large	
  
shifts	
  of	
  ground	
  truth,	
  with	
  respect	
  to	
  the	
  ground	
  metric.

• Learning	
  requires	
  computing	
  gradient	
  of	
  the	
  loss:	
  this	
  is	
  a	
  linear	
  program,	
  O(K3 log	
  K) – often	
  prohibitively	
  complex.
• A	
  regularized	
  approximation	
  is	
  efficient	
  to	
  compute:

• Optimal	
  transport	
  plan	
  is	
  computed	
  by	
  an	
  efficient	
  matrix	
  scaling iteration*.
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• Seismic	
  imaging	
   is	
  an	
  essential	
  tool	
  in	
  oil	
  and	
  gas	
  (O&G)	
  exploration.
• Goal	
  is	
  to	
  image	
  the	
  subsurface	
  rock	
  layers	
  and	
  other	
  geological	
  features,	
  

using	
  measurements	
  typically	
  comprising	
   reflected	
  sound	
  waves recorded	
  by	
  
a	
  hydrophone	
   array	
  at	
  the	
  surface.	
  

• Faults	
  are	
  of	
  significant	
  interest in	
  O&G	
  exploration	
  since	
  the	
  shifting	
   rock	
  
layers	
  can	
  trap	
  liquid	
  hydrocarbons	
  and	
  form	
  reservoirs.

• The 3D	
  structure	
  of	
  a	
  fault network	
  can	
  be	
  quite	
  complex,	
  representing	
  a	
  
challenge	
  for	
  structured	
  output	
  methods.	
  

Example	
  of	
  
complex	
  faulting	
  
(from	
  Mira	
  
Geoscience)
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• The	
  full	
   inverse	
  problem	
   is	
  ill-­‐posed,	
  but	
   recovering	
  
interesting	
  geological	
   features	
  from	
  the	
  reflection	
  waves	
  
is	
  possible	
  with	
  a	
  properly	
   learned	
  geological	
  prior	
   from	
  
the	
  training	
  data.

• Approach:	
   learn	
  a	
  map	
  from	
  seismic	
  recordings	
   to	
  
geological	
  features	
  (deep	
  neural	
  networks	
  +	
  structured	
  
output	
   learning).

• Simulate a	
  large	
  amount	
  of	
  training	
  data	
  using	
  known	
  
physics	
  of	
  wave	
  propagation.

• The	
  output	
   is	
  a	
  3D	
  grid	
  of	
  binary	
  “voxels”	
  indicating	
  
whether	
  a	
  fault	
  crosses	
  each	
  region.

Example	
  of	
  our	
  
randomly	
  synthesized	
  

velocity	
  model.

AUC IoU Hidden	
  
layers

Nodes	
  per	
  
layer

Faults	
  per	
  
model

0.902 0.311 5 768 4
0.893 0.294 5 640 4
0.836 0.220 7 640 4
0.833 0.218 8 512 4
0.854 0.246 7 512 2
0.849 0.227 6 512 2
0.820 0.219 6 512 2*
0.718 0.130 4 1024 1
0.897 0.395 4 512 1
0.919 0.384 4 256 1

Comparison	
  of	
  the	
  Wasserstein	
  (left)	
  and	
  non-­‐Wasserstein	
  
(middle)	
  -­‐based	
  predictions,	
   IoU (Intersection	
  over	
  Union).	
  Red	
  
areas	
  show	
  false	
  positives,	
  green	
  shows	
  true	
  positives	
  (correct	
  
predictions),	
  and	
  yellow	
  shows	
  false	
  negative.	
  	
  Right	
  shows	
  a	
  2D	
  
slice	
  of	
  a	
  3D	
  model.	
  The	
  Wasserstein	
  predictions	
  have	
  higher	
  IoU
(amount	
  of	
  green).

Figure 2: Left: the workflow of our deep learning based fault prediction system. Right: 2D illustration
of the cross-entropy loss vs. the Wasserstein loss. The red cells are ground truth, and the blue cells
are predictions. The cross-entropy loss treats both predictions equally while the Wasserstein loss
favors the bottom figure for the spatial smoothness.

relationship among the K output cells could enforce strong smoothness information. Consider a
prediction that is slightly off the ground truth, and another one that is completely wrong, as shown in
Figure 2; the cross entropy loss cannot effectively distinguish the two different cases.

Alternatively, consider the following Wasserstein loss [1],

`W (ŷ, y) = min

T2⇧(ŷ,y)
hT,Mi, ⇧(ŷ, y) = {T 2 RK⇥K

+ : T1 = ŷ, T

>1 = y} (1)

where hT,Mi = tr(T>
M) is the inner-product, for a given ground metric matrix Mk,k0

= d(k, k

0
)

for some ground metric d(·, ·) on the output space. For our application, the output space is the 3D
grid of cells, and the natural metric is the Euclidean distance between the cells.

T in the loss term is a joint probability distribution that marginalize to the ground-truth and the
prediction. Intuitively, T defines a transportation plan that maps probability mass from the prediction
to the ground-truth, and hT,Mi measures the cost of this plan according to the ground metric. The
loss is then defined by the cost of the optimal feasible transportation plan. For the cases of Figure 2,
the Wasserstein loss for the bottom right figure will be smaller than the top right figure, due to the
longer the cost of this plan according to the ground metric. The loss is defined by the cost of the
optimal plan.

4 Results

We evaluated the performance of our deep learning approach on a set of synthetic, randomly generated
geophysical models and corresponding simulated measurements. The geophysical models had several
subsurface layers with varying rock properties, and either one or two major planar faults at random
orientations and locations. Seismic recordings were simulated for each model for a regularly spaced
array of 20 ⇥ 20 surface microphones, with 9 initial shots or impulses at evenly spaced surface
locations, using an acoustic approximation to the wave equation.

We trained a variety of fully-connected deep neural networks with 4 to 6 hidden layers of varying
numbers of units. The output of the networks was a 20⇥ 20⇥ 20 3D voxel grid, with each voxel’s
value indicating the likelihood of a fault being present within the voxel. Ground truth labels on the
same grid were binary-valued, indicating presence or not of a fault in each voxel. In all cases, we
used a Wasserstein loss function for training.

Table 1 shows the best results obtained, on several sets of simulated test data. We report the area
under the ROC curve (AUC) for the predictions, comparing predicted likelihoods for the voxels
containing a ground truth labeled fault to those not containing a fault. We also report the intersection
over union (IoU) value, averaged over the test set images, with predicted likelihoods thresholded at a
value chosen to maximize the average IoU over the images. For datasets with one and two planar
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Algorithm 1 Gradient of the Wasserstein loss

Given h(x), y, �, K. (�
a

, �
b

if h(x), y unnormalized.)
u 1
while u has not converged do

u 

8
><

>:

h(x)↵ �
K

�
y ↵K>u

��
if h(x), y normalized

h(x)
�a�

�a�+1 ↵
✓
K

�
y ↵K>u

� �b�
�b�+1

◆ �a�
�a�+1

if h(x), y unnormalized

end while
If h(x), y unnormalized: v  y

�b�
�b�+1 ↵ �

K>u
� �b�

�b�+1

@W p

p

/@h(x) 
⇢

log u

�

� log u

>1
�K

1 if h(x), y normalized
�
a

(1� (diag(u)Kv)↵ h(x)) if h(x), y unnormalized

4 Efficient optimization via entropic regularization

To do learning, we optimize the empirical risk minimization functional (1) by gradient descent.
Doing so requires evaluating a descent direction for the loss, with respect to the predictions h(x).
Unfortunately, computing a subgradient of the exact Wasserstein loss (3), is quite costly, as follows.

The exact Wasserstein loss (3) is a linear program and a subgradient of its solution can be computed
using Lagrange duality. The dual LP of (3) is

dW p

p

(h(x), y) = sup

↵,�2CM

↵>h(x) + �>y, C
M

= {(↵,�) 2 RK⇥K

: ↵


+ �


0 M
,

0}. (5)

As (3) is a linear program, at an optimum the values of the dual and the primal are equal (see, e.g.
[17]), hence the dual optimal ↵ is a subgradient of the loss with respect to its first argument.

Computing ↵ is costly, as it entails solving a linear program with O(K2

) contraints, with K being
the dimension of the output space. This cost can be prohibitive when optimizing by gradient descent.

4.1 Entropic regularization of optimal transport

Cuturi [18] proposes a smoothed transport objective that enables efficient approximation of both the
transport matrix in (3) and the subgradient of the loss. [18] introduces an entropic regularization
term that results in a strictly convex problem:

�W p

p

(h(·|x), y(·)) = inf

T2⇧(h(x),y)

hT,Mi � 1

�
H(T ), H(T ) = �

X

,

0

T
,

0
log T

,

0 . (6)

Importantly, the transport matrix that solves (6) is a diagonal scaling of a matrix K = e��M�1:

T ⇤
= diag(u)Kdiag(v) (7)

for u = e�↵ and v = e�� , where ↵ and � are the Lagrange dual variables for (6).

Identifying such a matrix subject to equality constraints on the row and column sums is exactly a
matrix balancing problem, which is well-studied in numerical linear algebra and for which efficient
iterative algorithms exist [19]. [18] and [3] use the well-known Sinkhorn-Knopp algorithm.

4.2 Extending smoothed transport to the learning setting

When the output vectors h(x) and y lie in the simplex, (6) can be used directly in place of (3), as
(6) can approximate the exact Wasserstein distance closely for large enough � [18]. In this case, the
gradient ↵ of the objective can be obtained from the optimal scaling vector u as ↵ =

log u

�

� log u

>1
�K

1.
1 A Sinkhorn iteration for the gradient is given in Algorithm 1.

1Note that ↵ is only defined up to a constant shift: any upscaling of the vector u can be paired with a
corresponding downscaling of the vector v (and vice versa) without altering the matrix T

⇤. The choice ↵ =
log u
� � log u>1

�K 1 ensures that ↵ is tangent to the simplex.
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red	
  is	
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