Predicting geological features in 3D seismic data
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SEISMIC SURVEY VESSEL

Introduction & Background

* Seismic imaging is an essential tool in oil and gas (O&G) exploration.

* Goal is toimage the subsurface rock layers and other geological features,
using measurements typically comprising reflected sound waves recorded by
a hydrophone array at the surface.

* Faults are of significant interest in O&G exploration since the shifting rock
layers can trap liquid hydrocarbons and form reservoirs.

* The 3D structure of a fault network can be quite complex, representing a
challenge for structured output methods.
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Structured Output Learning and Wasserstein Loss

Strong prior on the output of the learned model: faults are fairly smooth, extended surfaces.
We encode this smoothness prior via a novel loss function: the Wasserstein loss. |t measures the optimal transport cost
between predicted and ground truth outputs.
bw(g,y) = min (T,M), T(gy)={T eRY**:T1=9,T'1=y}
Tell(g,y)

* The matrix M is a ground metric matrix, M}, ;» = d(k, k"), with d the distance between two output locations k, k’.

* Tis atransport plan which matches the mass in the prediction ¢ to the ground truth y/.
Major difference with standard divergences: the Wasserstein loss differentiates between outputs that are small and large
shifts of ground truth, with respect to the ground metric.
* Learning requires computing gradient of the loss: this is a linear program, O(K? log K) — often prohibitively complex.
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