

Learning 3D representations, disparity estimation, and structure from motion

Thomas Brox University of Freiburg, Germany

Research funded by the ERC Starting Grant VideoLearn, the German Research Foundation, and the Deutsche Telekom Stiftung

3D shape and texture from a single image

FlowNet: end-to-end optical flow

DispNet: end-to-end disparities

DeMoN: end-to-end structure from motion

Single-view to multi-view

Single-V

Maxim Tatarchenko Alexey Dosovitskiy ECCV 2016

Up-convolutional part

Single-view to multi-view

Synthetic images

Real images

Multi-view looks like 3D

Reconstructing explicit 3D models

Input images

Multiview morphing

Other interesting work

Yang et al. NIPS 2015 Recurrent network, incrementally rotates the object

Ours for comparison

Kar et al. CVPR 2015 Choy et al. 2016

3D shape and texture from a single image

FlowNet: end-to-end optical flow

DispNet: end-to-end disparities

DeMoN: end-to-end structure from motion

FlowNet: estimating optical flow with a ConvNet

- Can networks learn to find correspondences?
- New learning task!

(very different from classification, etc.)

Dosovitskiy et al. ICCV 2015

Thomas Brox

\rightarrow Help the network with an explicit correlation layer

Dosovitskiy et al. ICCV 2015

Enough data to train such a network?

- UNI FREIBURG Getting ground truth optical flow for realistic videos is hard
 - Existing datasets are small: •

	Frames with ground truth		
Middlebury	8		
ΚΙΤΤΙ	194		
Sintel	1041		
Needed	>10000		

Realism is overrated: the "flying chairs" dataset

Image pair

Optical flow

Synthetic 3D datasets

Mayer et al. CVPR 2016

Driving, Monkaa, FlyingThings3D datasets publicly available

Generalization: it works!

FlowNetSimple

FlowNetCorr

Although the network has only seen flying chairs for training, it predicts good optical flow on other data

Optical flow estimation in 18ms

Major changes:

- Improved data and training schedules
- Stacking of networks with motion compensation
- Special small displacements and fusion network

FlowNet vs. FlowNet 2.0

	Sintel	KITTI	runtime
DeepFlow (Weinzaepfel et al. 2013)	7.21	5.8	51940 ms
FlowFields (Bailer et al. 2015)	5.81	3.5	22810 ms
PCA Flow (Wulff & Black 2015)	8.65	6.2	140 ms
FlowNet (Dosovitskiy et al. 2015)	7.52	-	18 ms
FlowNet 2.0	5.74	1.8	123 ms

DispNet: disparity estimation

Mayer et al. CVPR 2016

DispNet: disparity estimation

3D shape and texture from a single image

FlowNet: end-to-end optical flow

DispNet: end-to-end disparities

DeMoN: end-to-end structure from motion

DeMoN: Structure from motion with a network

Egomotion estimation and depth estimation are mutually dependent

Estimates optical flow

Estimates depth and egomotion

Iterative refinement

Input images

Ground truth Optical Flow

Estimated optical flow

Ground truth Depth

Estimated depth

Outperforms two-frame SfM baselines

Motion & Pointcloud Comparison

MVS South-Building

DeMoN

Base-Oracle

Pointcloud Comparison

Sculpture

DeMoN

Eigen and Fergus ICCV 2015

Two images generalize better than one image

Pointcloud Comparison

NYU Test 578

DeMoN

Eigen and Fergus ICCV 2015

Structure from motion at 7fps

Bike Ride

Т

T+10

predicted depth

Example from RGB-D SLAM dataset (Sturm et al.) Red: DeMoN. Black: Ground truth.

Deep learning for 3D Vision is promising

3D shape and texture from a single image

FlowNet: end-to-end optical flow

DispNet: end-to-end disparities

DeMoN: end-to-end structure from motion