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Goal

Understanding indoor scenes observed in RGB-D images
* Robotics _ = =
« Augmented reality - ’
* Virtual tourism
 Surveillance
Home remodeling
Real estate
Telepresence
Forensics
 Games
. etc.
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Understanding indoor scenes observed in RGB-D images
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Goal

Understanding indoor scenes observed in RGB-D images in 3D
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Goal

Understanding indoor scenes observed in RGB-D images in 3D

 Surface reconstruction
« Amodal object detection
Object relationships
Materials, lights, etc.
Physical properties
Novel views

Info sharing

Spatial inference

« Simulation
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Goal for This Talk

Learn ConvNets to recognize patterns in voxels
 Local shape descriptor
« Amodal object detection
« Semantic scene completion
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Local shape descriptor

Amodal object detection

Scale

Semantic scene completion
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Large A. Zeng, S. Song, M. Niessner, M. Fisher, J. Xiao, T. Funkhouser,

“3DMatch: Learning Local Geometric Descriptors from 3D Reconstructions,”
submitted to CVPR 2017



Local Shape Descriptor

Goal: train a discriminating 3D local shape descriptor from data
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Local shape descriptor Local shape descriptor
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Local Shape Descriptor

Challenge: where to get training data?




Local Shape Descriptor: “3D Match”

Approach: train on wide-baseline correspondences in RGB-D reconstructions
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“Ground truth” match between
RGB-D Images from different views



Local Shape Descriptor: “3D Match”

Approach: train on wide-baseline correspondences in RGB-D reconstructions




Local Shape Descriptor: “3D Match”

Method: sample true/false correspondences from RGB-D reconstructions,
train Siamese network
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Local Shape Descriptor: “3D Match”

Result: learns to discriminate local shapes found in real-world data
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Local Shape Descriptor: “3D Match” Results

Result 1: learned feature descriptor predicts RGB-D point correspondences
more accurately than hand-tuned descriptors

Method Error
Johnson et al. (Spin-Images) [ 8]  83.7
Rusu ef al. (FPFH) [27] 61.3
2D ConvNet on Depth 38.5
Ours (3DMatch) 28.5

Match classification error at 95% recall

Method Recall (%) Precision (%)
Rusu et al. [27] + RANSAC 44.2 30.7
Johnson et al. [ 18] + RANSAC 51.8 31.6
Ours + RANSAC 60.1 36.0

Fragment Alignment Success Rate



Local Shape Descriptor: “3D Match” Results

Result 2: feature descriptor learned from RGB-D reconstructions provides
matching for recognizing poses of small objects in Amazon Picking Challenge

Method Rotation (%) Translation (%)
Baseline [+ 1] 49.0 67.6
Johnson et al. [ 1 5] + RANSAC 45.5 65.9
Rusu et al. [27] + RANSAC 43.5 65.6
Ours (no pretrain) + RANSAC 49.3 69.0

Ours + RANSAC 61 0 71 7

ObJect pose predlctlon accuracy

(a) object model  (b) te"stirig scan a5 top-view

Predicting pose of 3D object model in RGB-D scan



Local Shape Descriptor: “3D Match” Results

Result 3: feature descriptor learned from RGB-D reconstructions provides
discriminative matching of semantic correspondences on 3D meshes
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Large S. Song and J. Xiao,

“Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images,”
CVPR 2016



ODbject Detection

Goal: given a RGB-D image, find objects (labeled 3D amodal bounding boxes)

Input: Single RGB-D Output: labeled 3D Amodal Boxes



ODbject Detection

Most previous work:

o

> § % 2 / K © 7 2X s 2 @ 52
Encode Depth Map 2D Contour 2D Region 2D Object 2D Instance Coarse Pose Point Cloud 3D Amodal
as Extra Channels Detection Proposal Detection Segmentation Classification  Alignment Detection Result
Depth Map
3D Input | 2D Operations »|«3D-| 3D Output

[CVPR13] Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images

[IJCV14] Indoor Scene Understanding with RGB-D Images: Bottom-up Segmentation, Object Detection and semantic segmentation
[ECCV14] Object Detection and Segmentation using Semantically Rich Image and Depth Features

[CVPR15] Aligning 3D Models to RGB-D Images of Cluttered Scenes

[CVPR16] Cross Modal Distillation for Supervision Transfer



Object Detection: “Deep Sliding Shapes”

Approach:

3D Deep Learning
—
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3D Amodal
Detection Result

Depth Map

3D Input | 3D Operations » 3D Output




Object Detection: “Deep Sliding Shapes”
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Object Recognition Network



Object Detection: “Deep Sliding Shapes”

=> phed

Object Recognition Network




Object Detection: “Deep Sliding Shapes”

Data encoding:

1) Estimate
major directions
of room

2) Compute
TSDF




Object Detection: “Deep Sliding Shapes”

Data encoding:

1) Estimate
major directions
of room

2) Compute
TSDF

2.5 m

52m



Object Detection

Data encoding:

1) Estimate
major directions
of room

2) Compute
TSDF

: “Deep Sliding Shapes”
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Object Detection: “Deep Sliding Shapes”

3D region proposal network:
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Object Detection: “Deep Sliding Shapes”

3D region proposal network:




Object Detection: “Deep Sliding Shapes”

Multiscale 3D region proposal network:




Object Detection: “Deep Sliding Shapes”

Multiscale 3D region proposal network:

— N
> >
= c
Q [}
O O




Object Detection: “Deep Sliding Shapes”

Multiscale 3D region proposal network:

Conv

Class ) SO
Conv L1
3D Box Smooth

Conv 1

Conv 2

Conv 3

Receptive field: 0.4 m®



Object Detection: “Deep Sliding Shapes”

Multiscale 3D region proposal network:

Conv

Class ) Softmax

0.6x0.2x0.4 m
0.6x0.2x0.4 m
h 0.5%0.5%0.2 m

Level 1 Anchors

Receptive field: 0.4 m®



Object Detection: “Deep Sliding Shapes”

Multiscale 3D region proposal network:

gg:; > Softmax
Conv
Softmax
Class

Conv L1 Conv L1
3D Box Smooth

3D Box Smooth

Conv 1

Conv 2

Conv 3

Conv 4

Receptive field: 0.4 m® Receptive field: 1 m®
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Object Detection: “Deep Sliding Shapes”

RGB-D Image

Z

Region Proposal Network Object Recognition Network




Object Detection: “Deep Sliding Shapes”

Joint object recognition network:




Object Detection: “Deep Sliding Shapes”

Joint object recognition network:

Image Patch




Object Detection: “Deep Sliding Shapes”

Joint object recognition network:




Object Detection: “Deep Sliding Shapes”

Joint object recognition network:

Conv 1
Conv 2
Conv 3

3D ConvNet
— 2D VGG on ImageNet

Jrl*‘ ‘1*

Softmax

L1 Smooth



Object Detection: “Deep Sliding Shapes” Experiments

Train and test on amodal boxes provided in SUN RGB-D

2D segmentation 3D annotaion 2D segmentation

‘l

dining room

bedroom

i bathroom

home office conference room c¢lassroom

S. Song, S. Lichtenberg, and J. Xiao, “SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite,” CVPR 2015



Object Detection: “Deep Sliding Shapes” Results

Quantitative comparisons:

3D Non-Deep Learning

2D Deep Learning

3D Deep Learning

[ T3 . l_
Algorithm Input = - T L X | mAP
Sliding Shapes Depth | 33.5 | 29 | 345 | 33.8 | 67.3 | 39.6
Depth-RCNN (segment) | Depth | 71 | 18.2 | 49.6 | 30.4 | 63.4 | 46.5
Depth-RCNN (segment) | RGB-D | 74.7 | 18.6 | 50.3 | 28.6 | 69.7 | 48.4
Depth-RCNN (CAD fit) | Depth | 72.7 | 47.5 | 54.6 | 40.6 | 72.7 | 57.6
Depth-RCNN (CAD fit) | RGB-D | 73.4 | 44.2 | 57.2 | 33.4 | 84.5 | 58.5
Ours Depth | 83.0 | 58.8 | 68.6 | 49.5 | 79.2 | 67.8
Ours RGB-D | 84.7 | 61.1 | 70.5 | 55.4 | 89.9 | 72.3

Object detection accuracy on NYU v2 dataset (mAP)



Object Detection: “Deep Sliding Shapes” Results

Qualitative comparisons:

Sliding Shapes: sofa Ours: bathtub

sofa Wbed © bathtub ®parbage bin ©chair Btable © night stand ® lamp ® pillow © sink © totlet © bookshelf



Object Detection: “Deep Sliding Shapes” Results

Qualitative comparisons:

Sliding Shapes: chair Ours: sofa

sofa Wbed © bathtub ®parbage bin ©chair Btable © night stand ® lamp ® pillow © sink © totlet © bookshelf



Object Detection: “Deep Sliding Shapes” Results

Qualitative comparisons:

Sliding Shapes: table Ours: bed

sofa Wbed © bathtub ®parbage bin ©chair Btable © night stand ® lamp ® pillow © sink © totlet © bookshelf



Object Detection: “Deep Sliding Shapes” Results

Qualitative comparisons:

Sliding Shapes: miss Ours: table and chairs

Wwsofa Whed © bathtuh M parbage bin ©chair Wtahle © night stand ® lamp W pillow © sink © toilet © bookshelf



Object Detection: “Deep Sliding Shapes” Results

Qualitative comparisons:

Sliding Shapes: toilet Ours: garbage bin+bed
wgofa Wbhed © bathtub M garbapge bin @ chair Wtable
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Large S. Song, F. Yu, A. Zeng, A. Chang, M. Savva, and T. Funkhouser,

“Semantic Scene Completion from a Single Depth Image,”
submitted to CVPR 2017



Semantic Scene Completion

Goal: given an RGB-D image, label all voxels by semantic class
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Input: Single view depth map

Output: Semantic scene completion
W floor wall| window chair bed
I sofalitable  tvs | furn. objects



Semantic Scene Completion

Goal: given an RGB-D image, label all voxels by semantic class

i L '
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e===visible surface
. free space

. occluded space
. outside view
. outside room
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Semantic Scene Completion

Goal: given an RGB-D image, label all voxels by semantic class
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3D Scene



Semantic Scene Completion

Prior work: segmentation OR completion {

-~

surface segmentation

scene completion Firman et al.

3D Scene The occupangy and the o

are tightlyjint@rtwined !
semantic scene completion




Semantic Scene Completion: “SSCNet”

Approach: end-to-end deep network

Input: Single view depth map

3D ConvNet

Prediction: N+1 classes

Output: Semantic scene completion

empty
floor

wall
ceiling

chair



Semantic Scene Completion : “SSCNet”




Semantic Scene Completion : “SSCNet”




Semantic Scene Completion : “SSCNet”

Encode 3D space using flipped TSDF



Semantic Scene Completion : “SSCNet”
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Encode 3D space using flipped TSDF

Voxel size: 0.02 m



Semantic Scene Completion : “SSCNet”
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Receptive field: 0.98 m



Semantic Scene Completion : “SSCNet”

dilated (64,3,1,2) ~

dilated (64,3,1,2) ~
dilated (64,3,1,2)

dilated (64,3,1,2)

High-level 3D context
via big receptive field
provided by
dilated convolution

Receptive field: 2.26



Semantic Scene Completion : “SSCNet”
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Multi-scale aggregation

Receptive field: 0.98 m Receptive field:1.62 m Receptive field: 2.26 m



Semantic Scene Completion: “SSCNet” Experiments

Where to get training data?



Semantic Scene Completion: “SSCNet” Experiments

Where to get training data?

NYU: only visible surfaces SUNS3D: No semantic labels

No dense volumetric ground truth with semantic labels for a complete scene



Semantic Scene Completion: “SSCNet” Experiments

SUNCG dataset




Semantic Scene Completion: “SSCNet” Experiments

SUNCG dataset
* 46K houses =
* 50K floors
400K rooms

T

* 5.6M object instances !
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Semantic Scene Completion: “SSCNet” Experiments

SUNCG dataset ground truth

semantic scene
synthetic camera views completion




Semantic Scene Completion: “SSCNet” Experiments

SUNCG dataset
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Semantic Scene Completion: “SSCNet” Experiments

Train on SUNCG Test on NYU




Semantic Scene Completion: “SSCNet” Results

Result: better than previous volumetric completion algorithms

method training prec. recall IoU
Zheng et al. |36] NYU 60.1 46.7  34.6
Firman et al. [3] NYU 66.5 69.7 50.8
SSCNet completion NYU 66.3 96.9 648
SSCNet joint NYU 750 923 703
SSCNet joint SUNCG+NYU 75.0 96.0 73.0

Comparison to previous algorithms for volumetric completion
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Semantic Scene Completion: “SSCNet” Results

Result: better than previous 3D model fitting algorithms

scene completion

semantic scene completion

method (train) prec. recall IoU | ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.
Lin et al. (NYU) [17] 585 499 364 0 11.7 133 141 94 29 24 60 7.0 162 1.1 120
Geiger and Wang (NYU) [4] | 65.7 58 444102 625 19.1 58 85 406 277 7.0 6.0 226 59 196
SSCNet (NYU) 570 945 551 | 151 947 244 0 126 32,1 35 13 7.8 27.1 10.1 247
SSCNet (SUNCG) 55,6 919 532 | 58 81.8 196 54 129 344 26 136 6.1 94 74 202
SSCNet (SUNCG+NYU) 59.3 929 56.6 | 151 946 247 108 17.3 53.2 459 159 139 31.1 12.6 3035

Comparison to previous algorithms for 3D model fitting
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Summary

Three projects where ConvNets are trained to recognize patterns in voxels
with different ...

» Tasks

« Scales

 Training data

 Loss functions

* Network architectures

 Training protocols




Future Challenges

Acquiring larger data sets
Leveraging geometric structure
Leveraging semantic structure
Better integration RGB and D
Better surface parameterizations
Finer-grained categories

Higher resolution

etc.
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Future Challenges

» Acquiring larger data sets
Leveraging geometric structure

Leveraging semantic structure

Better integration RGB and D

1,500 surface reconstructions 36,213 labeled objects
Better surface parameterizations
Finer-grained categories A. Dai, A. Chang, M. Sawva,
M. Halber, T. Funkhouser, and M. Niessner,
H |g her resolution “ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes,”

submitted to CVPR 2017.
etc.



Future Challenges

Acquiring larger data sets

» |everaging geometric structure
Leveraging semantic structure
Better integration RGB and D

Better surface parameterizations

Finer-grained categories

M. Halber, T. Funkhouser,
Higher resolution “Fine-to-Coarse Registration of RGB-D Scans,”
submitted to CVPR 2017

etc.
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» |everaging geometric structure
Leveraging semantic structure
Better integration RGB and D

Better surface parameterizations

Finer-grained categories

M. Halber, T. Funkhouser,
Higher resolution “Fine-to-Coarse Registration of RGB-D Scans,”
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Future Challenges

Acquiring larger data sets

» |everaging geometric structure
Leveraging semantic structure
Better integration RGB and D

Better surface parameterizations

Finer-grained categories

M. Halber, T. Funkhouser,
H igher resolution “Fine-to-Coarse Registration of RGB-D Scans,”
submitted to CVPR 2017

etc.



Future Challenges

Acquiring larger data sets Sleeping Area

Leveraging geometric structure

» | everaging semantic structure

dresser

Better integration RGB and D

dresser

Better surface parameterizations

nightstand

| ———
Finer-grained categories .I]:Ll_l
Higher resolution el
Y. Zhang, M. Bali, J. Xiao, P. Kohli, and S. Izadi,
etc. “DeepContext: Context-Encoding Neural Pathways

for 3D Holistic Scene Understanding,”
submitted to CVPR 2017
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