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Many 3D representations are available

Candidates: 

multi-view images
depth map
volumetric
polygonal mesh
point cloud
primitive-based CAD models



3D representation

[Su et al., ICCV15]
[Dosovitskiy et al., ECCV16]

Novel view image synthesis
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3D representation

a chair assembled by cuboids

Candidates: 

multi-view images
depth map
volumetric
polygonal mesh
point cloud
primitive-based CAD models



Two groups of representations

Rasterized form 
(regular grids) 

Geometric form
(irregular)

Candidates: 

multi-view images
depth map
volumetric
polygonal mesh
point cloud
primitive-based CAD models



Extant 3D DNNs work on grid-like representations

Candidates: 

multi-view images
depth map
volumetric
polygonal mesh
point cloud
primitive-based CAD models



Ideally, a 3D representation should be
Friendly to learning

• easily formulated as the input/output of a neural network
• fast forward-/backward- propagation
• etc.
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Ideally, a 3D representation should be
Friendly to learning

• easily formulated as the output of a neural network
• fast forward-/backward- propagation
• etc.

Flexible
• can precisely model a great variety of shapes
• etc.

Geometrically manipulable for networks 
• geometrically deformable, interpolable and extrapolable for networks
• convenient to impose structural constraints
• etc.

Others



The problem of grid representations

Affability
to learning Flexibility Geometric

manipulability

Multi-view
images

Volumetric 
occupancy Expensive to compute: O(N3)

Depth map
Cannot model “back side”



Typical artifacts of volumetric reconstruction

Missing or extra thin structures

Volumes are hard for the network to rotate / deform / interpolate



Learn to analyze / generate Geometric Forms?

Rasterized form 
(regular grids) 

Geometric form
(irregular)

Candidates: 

multi-view images
depth map
volumetric
polygonal mesh
point cloud
primitive-based CAD models



Outline

Motivation

3D point cloud / CAD model reconstruction

3D point cloud analysis, e.g., segmentation



3D point clouds

A dual formulation of occupancy
Flexibility
Geometric manipulability
Affability to learning

Prob. distribution Particle filters

Volumetric 
occupancy 

Point
clouds

LagrangianEulerian



Result: 3D reconstruction from real Images

Input Reconstructed 3D point cloud



Result: 3D reconstruction from real Images

Input Reconstructed 3D point cloud



Groundtruth point cloud

An end-to-end synthesis-for-learning system

rendering

sampling

3D model
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Deep Neural 
Network

Predicted set

Groundtruth point cloud
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Deep Neural 
Network

Predicted set

Point Set

Distance

Groundtruth point cloud
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Deep Neural 
Network

Predicted set

Point Set

Distance

Groundtruth point cloud
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Network architecture: Vanilla version
Fully connected layer as predictor in standard classification network

Predictor

input

point 
set

conv fully connected
Encoder

shape 
embedding

!"



Network architecture: Vanilla version
Fully connected layer as predictor in standard classification network

Predictor

input

point 
set

conv fully connected
Encoder

shape 
embedding

!"

Independently regress n*3 numbers from      :  !" #×3

&



Natural statistics of geometry

• Many objects, especially man-made objects, contain large smooth
surfaces

• Deconvolution can generate locally smooth textures for images



Network architecture: Output from deconv branch

Encoder

Predictor

input

point 
set

conv deconv set unionfully connected

Two branch version

3-channel map of XYZ coordinates

#'=24*32=768 points

#(=256 points



Network architecture: Output from deconv branch

Encoder

Predictor

input

point 
set

conv deconv set unionfully connected

Two branch version

3-channel map of XYZ coordinates
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Network architecture: Output from deconv branch

Encoder

Predictor

input

point 
set

conv deconv set unionfully connected

Two branch version

3-channel map of XYZ coordinates

#'=24*32=768 points

#(=256 points



Network architecture: The role of two branches
blue: deconv branch – large, consistent, smooth structures
red: fully-connected branch – flexibly reconstruct intricate structures



Deep Neural 
Network

Predicted set

Point Set

Loss

Groundtruth point cloud
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Distance metrics between point sets

Given two sets of points, measure their discrepancy



Common distance metrics

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Optimal case: Earth Mover’s distance (EMD)



Common distance metrics

Worst case: Hausdorff distance (HD)
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A single farthest pair determines the distance.
In other words, not robust to outliers!



Common distance metrics

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Average all the nearest neighbor distance by nearest neighbors



Common distance metrics

Worst case: Hausdorff distance (HD)

Average case: Chamfer distance (CD)

Optimal case: Earth Mover’s distance (EMD)

Solves the optimal transportation (bipartite matching) problem!



Required properties of distance metrics

Geometric requirement

• Induces a nice shape space

• In other words, a good metric should reflect the natural shape differences

Computational requirement

• Defines a loss that is numerically easy to optimize
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Geometric requirement
• Induces a nice shape space

• In other words, a good metric should reflect the natural shape differences

Computational requirement

• Defines a loss that is numerically easy to optimize



How distance metric affects the learned geometry?

A fundamental issue: there is always uncertainty in prediction

By loss minimization, the network tends to predict a “mean shape” that 

averages out uncertainty in geometry



How distance metric affects the learned geometry?

A fundamental issue: there is always uncertainty in prediction, due to

• limited network ability

• Insufficient training data

• inherent ambiguity of groundtruth for 2D-3D dimension lifting

• etc.

By loss minimization, the network tends to predict a “mean shape” that 

averages out uncertainty in geometry



Mean shapes are affected by distance metric

The mean shape carries characteristics of the distance metric

Input EMD mean Chamfer mean

x̄ = argmin
x

E
s⇠S[d(x, s)]

continuous 
hidden variable

(radius)



Mean shapes from distance metrics

The mean shape carries characteristics of the distance metric

Input EMD mean Chamfer mean

x̄ = argmin
x

E
s⇠S[d(x, s)]

continuous 
hidden variable

(radius)

discrete 
hidden variable

(add-on location)



Comparison of predictions by CD versus EMD
Input Chamfer EMD



Lower prediction uncertainty, better mean shapes

Input Possible observations from a novel viewpoint

Can we reduce prediction uncertainty by 
factoring out the inherent ambiguity of groundtruth?



Predict multiple candidates

Build a conditional shape sampler

- ) is a random variable to perturb input
- Can navigate the groundtruth distribution

G(I, r)

Can be trained by conditional VAE or our MoN loss



Multiple plausible 3D shape predictions

side view

45 deg



Required properties of distance metrics

Geometric requirement

• Induces a nice shape space

• In other words, a nice metric should reflect the natural shape difference

Computational requirement
• Defines a loss function that is numerically easy to optimize



Computational requirement of metrics

To be used as a loss function, the metric has to be

• Differentiable with respect to point locations

• Efficient to compute



Computational requirement of metrics

• Differentiable with respect to point location

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence does not change

Conclusion: differentiable almost everywhere

Chamfer distance

Earth Mover’s distance



Computational requirement of metrics

• Efficient to compute

Chamfer distance: trivially parallelizable on CUDA

Earth Mover’s distance:
- Use coarse-to-fine approximation algorithm (Bertsekas, 1985)

- Quite good approximation ratio

- Parallelizable



Training

Implemented in TensorFlow (python)

Converge in ~2 days (the two branch version)

Trained on 4 GPUs in parallel

Training data rendered from 220K shapes in ShapeNet, covering ~2K categories

…



More Results



Good symmetry

Input Prediction
View 1 View 2

More visual results



Input Prediction
View 1 View 2

Good details

More visual results



Real-world results

Out of training categories

input observed view 90∘ input observed view 90∘



Comparison with state-of-the-art (volumetric)



Comparison with state-of-the-art (volumetric)

Ours3D-R2N2
(volumetric)

Ideal

0.08

Error metric: Chamfer Distance 



Shape completion from depth map



How about learning to predict geometric forms?

Rasterized form 
(regular grids) 

Geometric form
(irregular)

Candidates: 

multi-view images
depth map
volumetric
polygonal mesh
point cloud
primitive-based CAD models



Primitive-based assembly

We learn to predict a corresponding shape composed by primitives.
It allows us to predict consistent compositions across objects.



Unsupervised parsing

Each point is colored according to the assigned primitive



Approach – predict a high-dimensional point set

Primitive parameters as a point: size, rotation, translation of M cuboids. 

Variable number of parts? We predict “primitive existence probability”



Loss function

Loss
Chamfer distance!



Consistent primitive configurations

Primitive locations are consistent due to 
the smoothness of primitive prediction network



Unsupervised parsing

Mean accuracy (face area) on Shape COSEG chairs.



Outline

Motivation

3D point cloud / CAD model reconstruction

3D point cloud analysis



mug?

table?

car?

Classification Part Segmentation

PointNet

Semantic Segmentation

Input Point Cloud (point set representation)

Deep Learning on Point Sets



PointNet: deep net for unordered point set input

Idea 1: Sort
Idea 2: RNN
Idea 3: Use symmetry function
E.g. max, sum, weighted sum, L-norm, histogram, polynomial etc.
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Universal approximation to continuous set functions



Robustness to data corruption

Furthest Random
0 87.1 87.1

0.5 85.7 83.3
0.75 81.3 74
0.875 69.2 59.2
0.9375 49.1 33.2

PointNet VoxNet
0 87.1 86.3

0.5 83.3 46
0.75 74 18.5
0.875 59.2 13.3
0.9375 33.2 10.2

0 

20 

40 

60 

80 

100 

0 0.2 0.4 0.6 0.8 1 

A
cc

ur
ac

y 
(%

) 

Missing Data Ratio 

PointNet 

VoxNet 

(on ModelNet40 classification benchmark)



Partial object part segmentation

Partial Inputs Complete Inputs

airplane

car

chair

lamp

guitarmotorbike

mugtable

bag

rocket

earphone

laptop

cap

knife

pistol

skateboard

back

seat

legs
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Visualization of what are learned, by reconstruction

A compact summarization of the input set. Saliency!



To sum up

• We explore geometric representations as input / output of networks
• A space rich of open problems and opportunities

• Papers: 
Hao Su*, Haoqiang Fan*, Leonidas Guibas, A Point Set Generation Network for 
3D Object Reconstruction from a Single Image, arxiv

Hao Su*, Charles Qi*, Kaichun Mo, Leonidas Guibas, PointNet: Deep Learning 
on Point Sets for 3D Classification and Segmentation, arxiv

Shubham Tulsiani, Hao Su, Leonidas Guibas, Alexei Efros, Jitendra Malik, 
Learning Shape Abstractions by Assembling Volumetric Primitives, arxiv

• Codes will be released soon!



Thank You!


